Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Maximizing the Area under the ROC Curve with Decision Lists and Rule Sets
Högskolan i Skövde, Institutionen för kommunikation och information. Högskolan i Skövde, Forskningscentrum för Informationsteknologi.ORCID-id: 0000-0001-8382-0300
2007 (engelsk)Inngår i: Proceedings of the 7th SIAM International Conference on Data Mining / [ed] C. Apte, B. Liu, S. Parthasarathy, D. Skillicorn, Society for Industrial and Applied Mathematics , 2007, s. 27-34Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Decision lists (or ordered rule sets) have two attractive properties compared to unordered rule sets: they require a simpler classi¯cation procedure and they allow for a more compact representation. However, it is an open question what effect these properties have on the area under the ROC curve (AUC). Two ways of forming decision lists are considered in this study: by generating a sequence of rules, with a default rule for one of the classes, and by imposing an order upon rules that have been generated for all classes. An empirical investigation shows that the latter method gives a significantly higher AUC than the former, demonstrating that the compactness obtained by using one of the classes as a default is indeed associated with a cost. Furthermore, by using all applicable rules rather than the first in an ordered set, an even further significant improvement in AUC is obtained, demonstrating that the simple classification procedure is also associated with a cost. The observed gains in AUC for unordered rule sets compared to decision lists can be explained by that learning rules for all classes as well as combining multiple rules allow for examples to be ranked according to a more fine-grained scale compared to when applying rules in a fixed order and providing a default rule for one of the classes.

sted, utgiver, år, opplag, sider
Society for Industrial and Applied Mathematics , 2007. s. 27-34
HSV kategori
Forskningsprogram
Teknik
Identifikatorer
URN: urn:nbn:se:his:diva-2096ISI: 000289220200003Scopus ID: 2-s2.0-70449372884ISBN: 978-0-898716-30-6 (tryckt)OAI: oai:DiVA.org:his-2096DiVA, id: diva2:32372
Konferanse
7th SIAM International Conference on Data Mining, Minneapolis, MN, 26 April 2007 through 28 April 2007
Tilgjengelig fra: 2008-05-30 Laget: 2008-05-30 Sist oppdatert: 2019-02-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Søk i DiVA

Av forfatter/redaktør
Boström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 320 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf