Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Functional characterization of a stereospecific diol dehydrogenase, FucO, from Escherichia coli: substrate specificity, pH dependence, kinetic isotope effects and influence of solvent viscosity
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Kemiska sektionen, Institutionen för biokemi och organisk kemi.
2010 (engelsk)Inngår i: Journal of Molecular Catalysis B: Enzymatic, ISSN 1381-1177, E-ISSN 1873-3158, Vol. 66, nr 1-2, s. 148-155Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

FucO, (S)-1,2-propanediol oxidoreductase, from Escherichia coli is involved in the anaerobic catabolic metabolism of L-fucose and L-rhamnose, catalyzing the interconversion of lactaldehyde to propanediol. The enzyme is specific for the S-enantiomers of the diol and aldehyde suggesting stereospecificity in catalysis. We have studied the enzyme kinetics of FucO with a spectrum of putative alcohol and aldehyde substrates to map the substrate specificity space. Additionally, for a more detailed analysis of the kinetic mechanism, pH dependence of catalysis, stereochemistry in hydride transfer, deuterium kinetic isotope effect of hydride transfer and effect of increasing solvent viscosity were also analyzed. The outcome of this study can be summarized as follows: FucO is highly stereospecific with the highest E-value measured to be 320 for the S-enantiomer of 1,2-propanediol. The enzyme is strictly regiospecific for oxidation of primary alcohols. The enzyme prefers short-chained (2-4 carbons) substrates and does not act on bulkier compounds such as phenyl-substituted alcohols. FucO is an 'A-side' dehydrogenase transferring the pro-R-hydrogen of NADH to the aldehyde substrate. The deuterium KIEs of kcat and kcat/KM were 1.9 and 4.2, respectively, illustrating that hydride transfer is partially rate-limiting but also that other reaction steps contribute to rate limitation of catalysis. Combining the KIE results with the observed effects of increasing medium viscosity proposed a working model for the kinetic mechanism involving slow, rate-limiting, product release and on-pathway conformational changes in the enzyme-nucleotide complexes.

sted, utgiver, år, opplag, sider
2010. Vol. 66, nr 1-2, s. 148-155
HSV kategori
Forskningsprogram
Biokemi
Identifikatorer
URN: urn:nbn:se:uu:diva-123057DOI: 10.1016/j.molcatb.2010.04.010ISI: 000280928200020OAI: oai:DiVA.org:uu-123057DiVA, id: diva2:311740
Tilgjengelig fra: 2010-04-22 Laget: 2010-04-22 Sist oppdatert: 2017-12-12bibliografisk kontrollert
Inngår i avhandling
1. Oxidation of 1,2-Diols Using Alcohol Dehydrogenases: From Kinetic Characterization to Directed Evolution
Åpne denne publikasjonen i ny fane eller vindu >>Oxidation of 1,2-Diols Using Alcohol Dehydrogenases: From Kinetic Characterization to Directed Evolution
2013 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The use of enzymes as catalysts for chemical transformations has emerged as a “greener” alternative to traditional organic synthesis. An issue to solve though, is that enzymes are designed by nature to catalyze reactions in a living cell and therefore, in many cases, do not meet the requirements of a suitable biocatalyst. By mimicking Darwinian evolution these problems can be addressed in vitro by different types of directed evolution strategies.

α-Hydroxy aldehydes and α-hydroxy ketones are important building blocks in the synthesis of natural products, fine chemicals and pharmaceuticals. In this thesis, two alcohol dehydrogenases, FucO and ADH-A, have been studied. Their potentials to serve as useful biocatalysts for the production of these classes of molecules have been investigated, and shown to be good. FucO for its strict regiospecificity towards primary alcohols and that it strongly prefers the S-enantiomer of diol substrates. ADH-A for its regiospecificity towards secondary alcohols, its enantioselectivity and that is has the ability to use a wide variety of bulky substrates. The kinetic mechanisms of these enzymes were investigated using pre-steady state kinetics, product inhibition, kinetic isotope effects and solvent viscosity effects, and in both cases, the rate limiting steps were pin-pointed to conformational changes occurring at the enzyme-nucleotide complex state. These characterizations provide an important foundation for further studies on these two enzymes.  

FucO is specialized for activity with small aliphatic substrates but is virtually inactive with aryl-substituted compounds. By the use of iterative saturation mutagenesis, FucO was re-engineered and several enzyme variants active with S-3-phenylpropane-1,2-diol and phenylacetaldehyde were obtained. It was shown that these variants capability to act on larger substrates are mainly due to an enlargement of the active site cavity. Furthermore, several amino acids which are important for catalysis and specificity were identified. Phe254 interacts with aryl-substituted substrates through π-π stacking and may be essential for activity with these larger substrates. One mutation caused a loss in the interactions made between the enzyme and the nucleotide and thereby enhanced the turnover number for the preferred substrate

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2013. s. 59
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1081
Emneord
enzyme kinetics, alcohol dehydrogenase, directed evolution, enzyme engineering, diol, α-hydroxy aldehyde
HSV kategori
Forskningsprogram
Biokemi
Identifikatorer
urn:nbn:se:uu:diva-208139 (URN)978-91-554-8763-8 (ISBN)
Disputas
2013-11-08, B42, Husargatan 3, BMC, Uppsala universitet, Uppsala, 13:15 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2013-10-18 Laget: 2013-09-24 Sist oppdatert: 2014-01-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Blikstad, CeciliaWidersten, Mikael
Av organisasjonen
I samme tidsskrift
Journal of Molecular Catalysis B: Enzymatic

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 1079 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf