Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Classification of Microarrays with kNN: Comparison of Dimensionality Reduction Methods
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2007 (engelsk)Inngår i: Intelligent Data Engineering and Automated Learning - IDEAL 2007 / [ed] Hujun Yin, Peter Tino, Emilio Corchado, Will Byrne, Xin Yao, Berlin, Heidelberg: Springer Verlag , 2007, s. 800-809Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Dimensionality reduction can often improve the performance of the k-nearest neighbor classifier (kNN) for high-dimensional data sets, such as microarrays. The effect of the choice of dimensionality reduction method on the predictive performance of kNN for classifying microarray data is an open issue, and four common dimensionality reduction methods, Principal Component Analysis (PCA), Random Projection (RP), Partial Least Squares (PLS) and Information Gain(IG), are compared on eight microarray data sets. It is observed that all dimensionality reduction methods result in more accurate classifiers than what is obtained from using the raw attributes. Furthermore, it is observed that both PCA and PLS reach their best accuracies with fewer components than the other two methods, and that RP needs far more components than the others to outperform kNN on the non-reduced dataset. None of the dimensionality reduction methods can be concluded to generally outperform the others, although PLS is shown to be superior on all four binary classification tasks, but the main conclusion from the study is that the choice of dimensionality reduction method can be of major importance when classifying microarrays using kNN.

sted, utgiver, år, opplag, sider
Berlin, Heidelberg: Springer Verlag , 2007. s. 800-809
Serie
Lecture Notes in Computer Science ; 4881/2007
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-37828DOI: 10.1007/978-3-540-77226-2_80ISBN: 978-3-540-77225-5 (tryckt)OAI: oai:DiVA.org:su-37828DiVA, id: diva2:305374
Konferanse
8th International Conference on Intelligent Data Engineering and Automated Learning, LNCS 4881
Tilgjengelig fra: 2010-03-23 Laget: 2010-03-23 Sist oppdatert: 2018-01-12bibliografisk kontrollert

Open Access i DiVA

fulltext(360 kB)553 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 360 kBChecksum SHA-512
24de53533bd5599960bfad1a7a3445c7fcc6538d17c70985148eb014781e1144c514fdb9b77b58412d368bb67925edf3408e558fd18725fb3da2cd0af53c506a
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Deegalla, SampathBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 553 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf