Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Automated speech analysis applied to laryngeal disease categorization
Department of Applied Electronics, Kaunas University of Technology, Lithuania.
Högskolan i Halmstad, Sektionen för Informationsvetenskap, Data– och Elektroteknik (IDE), Halmstad Embedded and Intelligent Systems Research (EIS).ORCID-id: 0000-0003-2185-8973
Department of Applied Electronics, Kaunas University of Technology, Lithuania.
2008 (engelsk)Inngår i: Computer Methods and Programs in Biomedicine, ISSN 0169-2607, E-ISSN 1872-7565, Vol. 91, nr 1, s. 36-47Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The long-term goal of the work is a decision support system for diagnostics of laryngeal diseases. Colour images of vocal folds, a voice signal, and questionnaire data are the information sources to be used in the analysis. This paper is concerned with automated analysis of a voice signal applied to screening of laryngeal diseases. The effectiveness of 11 different feature sets in classification of voice recordings of the sustained phonation of the vowel sound /a/ into a healthy and two pathological classes, diffuse and nodular, is investigated. A k-NN classifier, SVM, and a committee build using various aggregation options are used for the classification. The study was made using the mixed gender database containing 312 voice recordings. The correct classification rate of 84.6% was achieved when using an SVM committee consisting of four members. The pitch and amplitude perturbation measures, cepstral energy features, autocorrelation features as well as linear prediction cosine transform coefficients were amongst the feature sets providing the best performance. In the case of two class classification, using recordings from 79 subjects representing the pathological and 69 the healthy class, the correct classification rate of 95.5% was obtained from a five member committee. Again the pitch and amplitude perturbation measures provided the best performance.

sted, utgiver, år, opplag, sider
Amsterdam: Elsevier, 2008. Vol. 91, nr 1, s. 36-47
Emneord [en]
Laryngeal disease, Fourier analysis, Cepstral coefficients, Speech recognition, k-NN classifier, Classification committee, Support vector machine
HSV kategori
Identifikatorer
URN: urn:nbn:se:hh:diva-2024DOI: 10.1016/j.cmpb.2008.01.008ISI: 000257281600004PubMedID: 18346812Scopus ID: 2-s2.0-44149127730Lokal ID: 2082/2419OAI: oai:DiVA.org:hh-2024DiVA, id: diva2:239242
Tilgjengelig fra: 2008-10-08 Laget: 2008-10-08 Sist oppdatert: 2017-12-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Søk i DiVA

Av forfatter/redaktør
Verikas, Antanas
Av organisasjonen
I samme tidsskrift
Computer Methods and Programs in Biomedicine

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 165 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf