Open this publication in new window or tab >>Show others...
2003 (English)In: Brain Research. Molecular Brain Research, ISSN 0169-328X, E-ISSN 1872-6941, Vol. 119, no 1, p. 62-72Article in journal (Refereed) Published
Abstract [en]
Amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. The function of these three proteins is not yet fully understood. One of the proposed roles of APP is to promote neurite outgrowth. The aim of this study was to investigate the regulation of the expression levels of APP family members during neurite outgrowth. We observed that retinoic acid (RA)-induced neuronal differentiation of human SH-SY5Y cells resulted in increased expression of APP, APLP1 and APLP2. We also examined the effect of the NFκB, AP-1 and c-Jun N-terminal kinase inhibitor curcumin (diferuloylmethane) on the RA-induced expression levels of these proteins. We found that treatment with curcumin counteracted the RA-induced mRNA expression of all APP family members. In addition, we observed that curcumin treatment resulted in neurite retraction without any effect on cell viability. Surprisingly, curcumin had differential effects on the APLP protein levels in RA-differentiated cells. RA-induced APLP1 protein expression was blocked by curcumin, while the APLP2 protein levels were further increased. APP protein levels were not affected by curcumin treatment. We propose that the sustained levels of APP and the elevated levels of APLP2, in spite of the reduced mRNA expression, are due to altered proteolytic processing of these proteins. Furthermore, our results suggest that APLP1 does not undergo the same type of regulated processing as APP and APLP2.
Keywords
APP, APLP1, APLP2; Curcumin, Retinoic acid, Neurite outgrowth
National Category
Neurosciences Neurology
Identifiers
urn:nbn:se:su:diva-31748 (URN)10.1016/j.molbrainres.2003.08.014 (DOI)000186670700007 ()
2009-12-142009-11-262022-02-25Bibliographically approved