Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Advances in Additive Manufacturing of Organic Electrochemical Transistors
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Technological advances and applications of printed electronic devices rely on novel organic semiconductor (OSC) materials and cutting-edge advanced manufacturing technologies. A growing number of solution- processable organic electronic materials has paved the way towards cost- efficient fabrication techniques, fostering the growth and emergence of printed electronics research in recent decades. Organic semiconductor materials are unique because of mixed ionic and electronic transport of charges that may translate biological signals into electrical ones or vice versa. The organic electrochemical transistor (OECT) is a type of transistor where the active material (channel) is made of an organic mixed ionic-electronic conductor (OMIEC). Since OECTs may serve as organic bioelectronic devices that encompass high ionic and electronic conductivity, they also represent a groundbreaking technology by forming communication channels between living systems and external electronic circuits used for recording. Highly conductive and stable OMIECs, sustainable solvents for ink formulations, bio-based substrates, new device architectures and redefined manufacturing strategies are the keys that unlock highly sensitive OECT-based (bio)sensor devices and OECT-based electronic circuits with high gain and low power consumption.  This dissertation explores and unveils the effects of different additive manufacturing strategies, channel materials, ink formulations and device architectures on the performance and applications of all-printed OECT devices. The key findings of this thesis are summarized in four first-authored scientific journal articles.   

In the first article, we redefined the manufacturing approach to create high performance all-printed OECTs exhibiting very short switching times; this approach was further verified by printing OECT-based inverters operating at a frequency beyond 100 Hz and five-stage ring oscillators. In the second article, we developed an all-printed sensor platform by combining highly sensitive OECT and piezoelectric sensor devices on a tattoo paper substrate for seamless integration with the skin, enabling the detection of radial pulse waves. In the third article, a screen printed OECT was integrated into capillary 3D-printed microfluidics with the goal of ion sensing, thereby forming an additively manufactured sensor platform. The fourth article demonstrates, for the first time, vertically stacked accumulation mode pgBTTT-based OECTs manufactured by combining screen and inkjet printing technologies. By selecting a non-toxic and biodegradable solvent (Cyrene) instead of chloroform in the preparation of the pgBTTT-based inkjet ink formulation, we move towards more sustainable OECTs. The resulting all-printed pgBTTT-based OECTs exhibited high figures of merit, short switching times and good operational stability in an ambient environment.  

Finally, this dissertation offers insights and perspectives on the rational use of printing technologies, channel materials (p-type), sustainable ink formulations, and device architectures to enable further progress of all-printed OECT-based (bio)sensors, amplifiers and complementary logic circuits for various (bio)electronic applications. 

Abstract [sv]

Teknologiska framsteg och tillämpningar inom tryckt elektronik är beroende av nya organiska halvledarmaterial och avancerad tillverkningsteknik. Ett stort urval av organiska elektroniska material och kostnadseffektiva additiva tillverkningstekniker har möjliggjort framväxten av forskningsområdet tryckt elektronik under de senaste decennierna. Organiska halvledarmaterial är unika, dels för att de kan processas från lösning, men också på grund av att kombinationen av både jon- och elektrontransport kan användas för att översätta biologiska signaler till elektriska, eller vice versa. En organisk elektrokemisk transistor (OECT) är en typ av transistor där det aktiva kanalmaterialet är baserat på ett organiskt material som leder både joner och elektroner, t.ex. en konjugerad polymer. Tack vare detta kan OECTs användas inom bioelektroniska tillämpningar, som banbrytande teknik för att underlätta kommunikationen mellan levande system och elektronisk mätutrustning.  Organiska halvledare med hög ledningsförmåga och bra stabilitet, miljövänliga lösningsmedel för bläckformuleringar, biobaserade substrat, nya komponentstrukturer och nytänkande kring tillverkningsstrategier är viktiga parametrar för att erhålla hög känslighet i OECT-baserade (bio)sensorer samt OECT-baserade elektroniska kretsar med hög förstärkning och låg effektförbrukning. Denna avhandling syftar till att utforska och förstå hur olika additiva tillverkningsstrategier, material, bläckformuleringar och komponentstrukturer påverkar prestandan hos helt tryckta OECTs, och i vilka tillämpningsområden de kan användas. De viktigaste resultaten av detta arbete sammanfattas i fyra artiklar.   

I den första artikeln kombinerade vi två olika tryckteknologier för att skapa högpresterande heltryckta OECTs med korta switchtider; detta tillvägagångssätt verifierades också genom att trycka ringoscillatorer samt OECT-baserade inverterare som kunde drivas vid en frekvens på över 100 Hz. I den andra artikeln utvecklade vi helt tryckta sensorplatt-formar genom att kombinera OECTs med hög känslighet och piezoelektriska sensorer på tatueringspapper, för att skapa bästa möjliga kontakt med huden. Den screentryckta piezoelektriska sensorn användes för att detektera och omvandla mekaniska vibrationer från hjärtslagen till elektriska signaler, som i sin tur användes som insignal till en förstärkarkomponent i form av en tryckt OECT. I den tredje artikeln integrerades en screentryckt OECT i en mikrofluidikkrets, med målet att detektera joner i en additivt tillverkad sensorplattform. Den 3D-skrivna kapillära mikrofluidikkretsen modifierades med skräddarsydda mönster av inkjettryckta hydrofila filmer för att skapa ett automatiserat flöde av flera olika vätskor. Den hydrofila egenskapen bibehölls i minst 6 månader och ingen extern utrustning krävdes för att kontrollera det sekventiella flödet av vätskor.  

Den fjärde artikeln visar en pgBTTT-baserad OECT tillverkad genom att kombinera screen- och inkjettryckning. Den organiska halvledande po-lymeren pgBTTT användes som det aktiva kanalmaterialet, vilket resulterade i en anrikningstransistor där de ingående materialen trycktes ovanpå varandra. Dessutom användes ett ofarligt och biologiskt nedbryt-bart lösningsmedel (Cyrene) i det pgBTTT-baserade inkjetbläcket, vilket är ett viktigt steg i arbetet mot mer hållbara elektroniska komponenter.  

Sammanfattningsvis tillhandahåller denna doktorsavhandling insikter och perspektiv på användningen av tryckteknik, materialval, hållbara bläckformuleringar och komponentstrukturer för att möjliggöra ytterligare utveckling av helt tryckta OECT-baserade (bio)sensorer, förstärkarkretsar och komplementära logikkretsar för olika (bio)elektroniska applikationer.   

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. , p. 79
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2385
Keywords [en]
OECT, Printed electronics, PEDOT:PSS, PgBTTT, Sustainable, All-printed sensor platform
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:liu:diva-202993DOI: 10.3384/9789180756167ISBN: 9789180756150 (print)ISBN: 9789180756167 (electronic)OAI: oai:DiVA.org:liu-202993DiVA, id: diva2:1853816
Public defence
2024-05-24, K1, Kåkenhus, Campus Norrköping, Norrköping, 10:00 (English)
Opponent
Supervisors
Available from: 2024-04-23 Created: 2024-04-23 Last updated: 2024-04-24Bibliographically approved
List of papers
1. High Performance Organic Electrochemical Transistors and Logic Circuits Manufactured via a Combination of Screen and Aerosol Jet Printing Techniques
Open this publication in new window or tab >>High Performance Organic Electrochemical Transistors and Logic Circuits Manufactured via a Combination of Screen and Aerosol Jet Printing Techniques
2022 (English)In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 7, no 10Article in journal (Refereed) Published
Abstract [en]

This work demonstrates a novel fabrication approach based on the combination of screen and aerosol jet printing to manufacture fully printed organic electrochemical transistors (OECTs) and OECT-based logic circuits on PET substrates with superior performances. The use of aerosol jet printing allows for a reduction of the channel width to ≈15 µm and the estimated volume by a factor of ≈40, compared to the fully screen printed OECTs. Hence, the OECT devices and OECT-based logic circuits fabricated with the proposed approach emerge with a high ON/OFF ratio (103?104) and remarkably fast switching response, reaching an ON/OFF ratio of >103 in 4?8 ms, which is further demonstrated by a propagation delay time of just above 1 ms in OECT-based logic inverter circuits operated at a frequency of 100 Hz. All-printed monolithically integrated OECT-based five-stage ring oscillator circuits further validated the concept with a resulting self-oscillation frequency of 60 Hz.

Place, publisher, year, edition, pages
John Wiley & Sons, Ltd, 2022
Keywords
aerosol jet printing, OECT, PEDOT:PSS, printed electronics, screen printing
National Category
Physical Sciences
Identifiers
urn:nbn:se:liu:diva-202989 (URN)10.1002/admt.202200153 (DOI)
Note

Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 813863 (BORGES) and the European Union's Horizon 2020 research and innovation programme under the grant agreement No 825339 (WEARPLEX).

Available from: 2024-04-23 Created: 2024-04-23 Last updated: 2024-04-23Bibliographically approved
2. Screen-Printed Piezoelectric Sensors on Tattoo Paper Combined with All-Printed High-Performance Organic Electrochemical Transistors for Electrophysiological Signal Monitoring
Open this publication in new window or tab >>Screen-Printed Piezoelectric Sensors on Tattoo Paper Combined with All-Printed High-Performance Organic Electrochemical Transistors for Electrophysiological Signal Monitoring
2023 (English)In: ACS Applied Materials and Interfaces, ISSN 1944-8244, E-ISSN 1944-8252Article, review/survey (Refereed) Epub ahead of print
Abstract [en]

This work demonstrates sensitive and low-cost piezoelectric sensors on skin-friendly, ultrathin, and conformable substrates combined with organic electrochemical transistors (OECTs) for the detection and amplification of alternating low-voltage input signals. The fully screen-printed (SP) piezoelectric sensors were manufactured on commercially available tattoo paper substrates, while the all-printed OECTs, relying on an extended gate electrode architecture, were manufactured either by solely using SP or by combining SP and aerosol jet printing (AJP) on PET substrates. Applying a low-voltage signal (+/- 25 mV) to the gate electrode of the SP+AJP OECT results in approximately five times higher current modulation as compared to the fully SP reference OECT. The tattoo paper-based substrate enables transfer of the SP piezoelectric sensor to the skin, which in turn allows for radial pulse monitoring when combined with the SP+AJP OECT; this is possible due to the ability of the conformable sensor to convert mechanical vibrations into voltage signals along with the highly sensitive current modulation ability of the transistor device to further amplify the output signal. The results reported herein pave the way toward all-printed fully conformable wearable devices with high sensitivity to be further utilized for the real-time monitoring of electrophysiological signals.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2023
Keywords
piezoelectric sensor; OECT; aerosol jet printing; screen printing; PEDOT:PSS; printed electronics
National Category
Computer Engineering
Identifiers
urn:nbn:se:liu:diva-201031 (URN)10.1021/acsami.3c10299 (DOI)001158876400001 ()38018124 (PubMedID)
Note

Funding Agencies|HORIZON EUROPE Marie Sklodowska-Curie Actions [825339, 964677]; European Union

Available from: 2024-02-23 Created: 2024-02-23 Last updated: 2024-04-23
3. On-Demand Inkjet Printed Hydrophilic Coatings for Flow Control in 3D-Printed Microfluidic Devices Embedded with Organic Electrochemical Transistors
Open this publication in new window or tab >>On-Demand Inkjet Printed Hydrophilic Coatings for Flow Control in 3D-Printed Microfluidic Devices Embedded with Organic Electrochemical Transistors
Show others...
2023 (English)In: Advanced Materials Technologies, E-ISSN 2365-709X, Vol. 8, no 15, article id 2300127Article in journal (Refereed) Published
Abstract [en]

Microfluidic surface chemistry can enable control of capillary-driven flow without the need for bulky external instrumentation. A novel pondered nonhomogeneous coating defines regions with different wetting properties on the microchannel walls. It changes the curvature of the liquid-air meniscus at various channel cross-sections and consequently leads to different capillary pressures, which is favorable in the strive toward automatic flow control. This is accomplished by the deposition of hydrophilic coatings on the surface of multilevel 3D-printed (3DP) microfluidic devices via inkjet printing, thereby retaining the surface hydrophilicity for at least 6 months of storage. To the best of our knowledge, this is the first demonstration of capillary flow control in 3DP microfluidics enabled by inkjet printing. The method is used to create "stop" and "delay" valves to enable preprogrammed capillary flow for sequential release of fluids. To demonstrate further utilization in point-of-care sensing applications, screen printed organic electrochemical transistors are integrated within the microfluidic chips to sense, sequentially and independently from external actions, chloride anions in the (1-100) x 10(-3) m range. The results present a cost-effective fabrication method of compact, yet comprehensive, all-printed sensing platforms that allow fast ion detection (<60 s), including the capability of automatic delivery of multiple test solutions.

Place, publisher, year, edition, pages
WILEY, 2023
Keywords
3D-printing; capillary-driven microfluidics; hydrophilic coating; inkjet printing; OECT
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:liu:diva-196724 (URN)10.1002/admt.202300127 (DOI)001019956900001 ()
Note

Funding Agencies|European Union [813863]

Available from: 2023-08-22 Created: 2023-08-22 Last updated: 2024-04-23Bibliographically approved
4. Toward Sustainability in All-Printed Accumulation Mode Organic Electrochemical Transistors
Open this publication in new window or tab >>Toward Sustainability in All-Printed Accumulation Mode Organic Electrochemical Transistors
Show others...
2024 (English)In: Advanced Functional Materials, ISSN 1616-301X, E-ISSN 1616-3028Article in journal (Refereed) Epub ahead of print
Abstract [en]

This study reports on the first all-printed vertically stacked organic electrochemical transistors (OECTs) operating in accumulation mode; the devices, relying on poly([4,4 '-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)-2,2 '-bithiophen-5,5 '-diyl]-alt-[thieno[3,2-b]thiophene-2,5-diyl]) (pgBTTT) as the active channel material, are fabricated via a combination of screen and inkjet printing technologies. The resulting OECTs (W/L approximate to 5) demonstrate good switching performance; g(m, norm) approximate to 13 mS cm(-1), mu C* approximate to 21 F cm(-1) V-1 s(-1), ON-OFF ratio > 10(4) and good cycling stability upon continuous operation for 2 h. The inkjet printing process of pgBTTT is established by first solubilizing the polymer in dihydrolevoglucosenone (Cyrene), a non-toxic, cellulose-derived, and biodegradable solvent. The resulting ink formulations exhibit good jettability, thereby providing reproducible and stable p-type accumulation mode all-printed OECTs with high performance. Besides the environmental and safety benefits of this solvent, this study also demonstrates the assessment of how the solvent affects the performance of spin-coated OECTs, which justifies the choice of Cyrene as an alternative to commonly used harmful solvents such as chloroform, also from a device perspective. Hence, this approach shows a new possibility of obtaining more sustainable printed electronic devices, which will eventually result in all-printed OECT-based logic circuits operating in complementary mode.

Place, publisher, year, edition, pages
WILEY-V C H VERLAG GMBH, 2024
Keywords
green solvents; OECT; pgBTTT; printed electronics; sustainable
National Category
Other Materials Engineering
Identifiers
urn:nbn:se:liu:diva-202275 (URN)10.1002/adfm.202314857 (DOI)001181798100001 ()
Note

Funding Agencies|European Union [964677]; Vinnova [2023-01337]; FWO Vlaanderen [G025922N, 1S70122N]

Available from: 2024-04-09 Created: 2024-04-09 Last updated: 2024-04-23

Open Access in DiVA

fulltext(21411 kB)174 downloads
File information
File name FULLTEXT01.pdfFile size 21411 kBChecksum SHA-512
2c675e33e56e6197735344d78e76a80a47857dabdde21e3741c03928e420f9c3a5319e238bc1912240489fabc4e9359eb9f44c0ad3c6710bb9f1197857548ed7
Type fulltextMimetype application/pdf
Order online >>

Other links

Publisher's full text

Search in DiVA

By author/editor
Makhinia, Anatolii
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 174 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 923 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf