Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Duodenal bicarbonate secretion in rats: Stimulation by intra-arterial and luminal guanylin and uroguanylin
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap.
2007 (engelsk)Inngår i: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 191, nr 4, s. 309-317Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Aim: Uroguanylin and guanylin are endogenous ligands for guanylate cyclase C, an upstream regulator of the cystic fibrosis transmembrane resistance (CFTR) anion channel, and both peptides increase intestinal anion export in vitro. We have compared the effects of close intra-arterial and luminal administration of uroguanylin and guanylin on duodenal bicarbonate secretion in vivo and studied the interactions with melatonin and cholinergic stimulation.

Methods: Lewis × Dark Agouti rats were anaesthetized and a segment of the proximal duodenum with intact blood supply was cannulated in situ. Mucosal bicarbonate secretion (pH stat) was continuously recorded and peptides were infused intra-arterially or added to the luminal perfusate.

Results: Intra-arterial (50–1000 pmol kg−1 h−1) as well as luminal administration (50–500 nmol L−1) of guanylin or uroguanylin caused dose-dependent increases in the duodenal secretion. Luminal administration induced more rapidly appearing rises in secretion and the two peptides induced secretory responses of similar shape and magnitude. The melatonin MT2-selective antagonist luzindole (600 nmol kg−1) significantly depressed the response to intra-arterial guanylins but did not affect secretion induced by luminal guanylins. Similarly, the muscarinic antagonist atropine (0.75 μmol kg−1 followed by 0.15 μmol kg−1 h−1) abolished the response to intra-arterial uroguanylin but caused only slight suppression of the response to luminal uroguanylin.

Conclusions: Intra-arterial as well as luminal uroguanylin and guanylin are potent stimuli of duodenal mucosal bicarbonate secretion in vivo. The response to luminal guanylins reflects an action at apical receptors. Stimulation by parenteral guanylins, in contrast, is under cholinergic influence and interacts with melatonin produced by mucosal enteroendocrine cells.

sted, utgiver, år, opplag, sider
2007. Vol. 191, nr 4, s. 309-317
Emneord [en]
bicarbonate secretion, cholinergic stimulation, duodenum in situ, enteroendocrine cells, guanylyl cyclase C, luzindole, melatonin
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-97106DOI: 10.1111/j.1748-1716.2007.01759.xISI: 000250795300006PubMedID: 17995576OAI: oai:DiVA.org:uu-97106DiVA, id: diva2:171901
Tilgjengelig fra: 2008-04-23 Laget: 2008-04-23 Sist oppdatert: 2017-12-14bibliografisk kontrollert
Inngår i avhandling
1. Effects of Orexins, Guanylins and Feeding on Duodenal Bicarbonate Secretion and Enterocyte Intracellular Signaling
Åpne denne publikasjonen i ny fane eller vindu >>Effects of Orexins, Guanylins and Feeding on Duodenal Bicarbonate Secretion and Enterocyte Intracellular Signaling
2008 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

The duodenal epithelium secretes bicarbonate ions and this is regarded as the primary defence mechanism against the acid discharged from the stomach. For an efficient protection, the duodenum must also function as a sensory organ identifying luminal factors. Enteroendocrine cells are well-established intestinal “taste” cells that express signaling peptides such as orexins and guanylins. Luminal factors affect the release of these peptides, which may modulate the activity of nearby epithelial and neural cells.

The present thesis considers the effects of orexins and guanylins on duodenal bicarbonate secretion. The duodenal secretory response to the peptides was examined in anaesthetised rats in situ and the effects of orexin-A on intracellular calcium signaling by human as well as rat duodenal enterocytes were studied in vitro.

Orexin-A, guanylin and uroguanylin were all stimulants of bicarbonate secretion. The stimulatory effect of orexin-A was inhibited by the OX1-receptor selective antagonist SB-334867. The muscarinic antagonist atropine on the other hand, did not affect the orexin-A-induced secretion, excluding involvement of muscarinic receptors. Orexin-A induced calcium signaling in isolated duodenocytes suggesting a direct effect at these cells. Interestingly, orexin-induced secretion and calcium signaling as well as mucosal orexin-receptor mRNA and OX1-receptor protein levels were all substantially downregulated in overnight fasted rats compared with animals with continuous access to food. Further, secretion induced by Orexin-A was shown to be dependent on an extended period of glucose priming.

The uroguanylin-induced bicarbonate secretion was reduced by atropine suggesting involvement of muscarinic receptors. The melatonin receptor antagonist luzindole attenuated the secretory response to intra-arterially administered guanylins but had no effect on secretion when the guanylins were given luminally.

In conclusion, the results suggest that orexin-A as well as guanylins may participate in the regulation of duodenal bicarbonate secretion. Further, the duodenal orexin system is dependent on the feeding status of the animals.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2008. s. 70
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 337
Emneord
Physiology, alkaline secretion, carbohydrates, central nervous system, cholinergic stimulation, duodenum, enteric nervous system, enterochromaffin cell, fasting, feeding, glucose, guanylyl cyclase C, humans, hypocretin, intra-arterial, in situ, intracerebroventricular, luminal acid, luzindole, orexin-B, SB-334867, Fysiologi
Identifikatorer
urn:nbn:se:uu:diva-8664 (URN)978-91-554-7173-6 (ISBN)
Disputas
2008-05-15, B21, Uppsala Biomedicinska Centrum (BMC), Norra vägen, Uppsala, 13:15
Opponent
Veileder
Tilgjengelig fra: 2008-04-23 Laget: 2008-04-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMed
Av organisasjonen
I samme tidsskrift
Acta Physiologica

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 549 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf