Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Gene Technology. KTH, Centres, Science for Life Laboratory, SciLifeLab.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science. KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.ORCID iD: 0000-0001-7755-2661
Karolinska Inst, Dept Oncol Pathol, Solna, Sweden..
Show others and affiliations
2022 (English)In: Journal of Extracellular Vesicles, E-ISSN 2001-3078, Vol. 11, no 11, article id 12277Article in journal (Refereed) Published
Abstract [en]

Small extracellular vesicles (sEVs) have in recent years evolved as a source of biomarkers for disease diagnosis and therapeutic follow up. sEV samples derived from multicellular organisms exhibit a high heterogeneous repertoire of vesicles which current methods based on ensemble measurements cannot capture. In this work we present droplet barcode sequencing for protein analysis (DBS-Pro) to profile surface proteins on individual sEVs, facilitating identification of sEV-subtypes within and between samples. The method allows for analysis of multiple proteins through use of DNA barcoded affinity reagents and sequencing as readout. High throughput single vesicle profiling is enabled through compartmentalization of individual sEVs in emulsion droplets followed by droplet barcoding through PCR. In this proof-of-concept study we demonstrate that DBS-Pro allows for analysis of single sEVs, with a mixing rate below 2%. A total of over 120,000 individual sEVs obtained from a NSCLC cell line and from malignant pleural effusion (MPE) fluid of NSCLC patients have been analyzed based on their surface proteins. We also show that the method enables single vesicle surface protein profiling and by extension characterization of sEV-subtypes, which is essential to identify the cellular origin of vesicles in heterogenous samples.

Place, publisher, year, edition, pages
Wiley , 2022. Vol. 11, no 11, article id 12277
Keywords [en]
droplet barcode sequencing (DBS), droplet barcode sequencing for protein analysis (DBS-Pro), protein profiling, sEV subtypes, single vesicle, small extracellular vesicles (sEVs), surface protein
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-321980DOI: 10.1002/jev2.12277ISI: 000878411900001PubMedID: 36329610Scopus ID: 2-s2.0-85141266360OAI: oai:DiVA.org:kth-321980DiVA, id: diva2:1714000
Note

QC 20221128

Available from: 2022-11-28 Created: 2022-11-28 Last updated: 2024-02-14Bibliographically approved
In thesis
1. Exploring human variations by droplet barcoding
Open this publication in new window or tab >>Exploring human variations by droplet barcoding
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Biological variations are being explored at ever-increasing rates through the rapid advancement of analytical techniques. Techniques like massively parallel sequencing empower scientists to accurately differentiate individuals’ genetic compositions, cellular functionalities, and healthy tissue from diseased. The knowledge gained from these techniques brings us ever closer to grasping the complexities of life, contributing to human development. Still, to fully elucidate biological variations in different samples requires novel sensitive and high- throughput techniques, capable of placing everything in its correct context. One such technique gaining promise is droplet barcoding. 

Droplet barcoding leverages emulsion droplets to segregate samples into their functional components, coupled with barcodes that can group tagged molecules following sequencing. This technique constitutes a versatile tool for studying biological variations in both the phenotype and genotype. This thesis leverages droplet barcoding to explore variations relating to human biology. 

Droplet barcoding was used to study phenotype variations, looking at protein compositions in single extracellular vesicles (Paper I) and single cells (Paper II). Paper I studies extracellular vesicles which are naturally released from cells. They carry heterogeneous protein signatures that can inform about their cellular origin. Tens of thousands of extracellular vesicles were profiled, including approximately 25,000 from lung cancer patients. From these protein profiles, extracellular vesicles could be grouped into putative subtypes. Paper II presents a novel method for studying single cells which was used to characterize blood-derived immune cells. The method enabled the identification of most major immune cell lineages. 

Haplotype-resolved genetic variations were analyzed using a linked read sequencing method based on droplet barcoding. Linked-read sequencing conserves long-range information from short-read sequencing by co- barcoding subsections of long DNA fragments. Paper III presents an open-source pipeline (BLR) for whole genome haplotyping using linked reads. BLR generates accurate and continuous haplotypes, outperforming PacBio HiFi-based diploid assembly. We further show that integration with low-coverage long-read data can improve phasing accuracy in tandem repeats. With 10X Genomics linked reads, BLR generated more continuous haplotypes compared to other workflows. Paper IV applies linked read sequencing to reveal the haplotype complexities of cancer genomes. In two patients with colorectal cancer, we identified several large-scale aberrations impacting cancer-related genes. Additionally, several short somatic variants were found to impact nearly all oncogenic networks identified by TCGA. Demonstrating the importance of haplotype-resolved analysis for cancer genomics, one patient exhibited two nonsense mutations on separate haplotypes in the well-known colorectal cancer gene APC. 

Abstract [sv]

Biologiska variationer utforskas i allt snabbare grad, pådrivet av den snabba utvecklingen av analytiska tekniker. Tekniker som massiv parallellsekvensering möjliggör för forskare att noggrant särskilja individers genetiska sammansättningar, cellernas olika funktioner och frisk vävnad från sjuk. Vetskapen dessa tekniker medför ger oss allt djupare insikter om livsformers komplexitet som främjar mänsklig utveckling. Torts dessa framsteg kräver klarläggandet av biologiska variationer i olika prover nya känsliga tekniker med hög kapacitet, kapabla att placera information i dess rätta sammanhang. En särskilt lovande teknik är droppkodning. 

Droppkodning utnyttjar emulsionsdropparnas förmåga att separera prover i dess funktionella komponenter kombinerat med DNA-koder för att gruppera märkta molekyler efter sekvensering. Denna teknik utgör ett mångsidigt verktyg för att studera biologiska variationer i både fenotyp och genotyp. Den här avhandlingen utforskar tekniker baserat på droppkodning för att analysera dessa variationer relaterat till människlig biologi. 

Droppkodning användes i analys av fenotypvariationer genom att studera proteinsignaturer hos enskilda extracellulära vesiklar (Artikel I) samt enskilda celler (Artikel II). Artikel I studerar extracellulära vesiklar, vilka är partiklar som naturligt släpps ut från celler. Dessa vesiklar bär på heterogena protein-signaturer som kan informera om dess cellulära härkomst. I studien undersöks proteinsignaturer från tiotusentals extracellulära vesiklar, inklusive cirka 25 000 från lungcancerpatienter. Utifrån dessa signaturer kunde extracellulära vesiklar sedan grupperas i potentiella subtyper. Artikel II presenterar en ny metod för att studera enskilda celler, som användes för att karakterisera immunceller från blod. Metoden möjliggjorde identifiering av de flesta stora immuncellspopulationerna. 

Haplotyp-upplösta genotypvariationer analyserades med en metod för länkad sekvensering baserad på droppkodning. Länkad sekvensering möjliggör att vid sekvensering med kort läslängd bevara information över långa genomiska distanser genom DNA-kodning av små delar av långa DNA-fragment. Artikel III presenterar en pipeline (BLR) med öppen källkod för helgenoms haplotypning som använder data från länkad sekvensering. BLR genererar haplotyper med stor exakthet och kontinuitet som överträffar diploid genom-sammansättning (“assembly”) med PacBio HiFi data. Vi visar även att integrering med långa sekvenser med begränsad genomtäckning förbättra haplotypning i tandem-repetitiva genomregioner. Med 10X Genomics länkade sekvenser genererade BLR mer kontinuerlig haplotypning jämfört med andra analysflöden. Artikel IV tillämpar länkad sekvensering för att avslöja haplotypkomplexiteten hos cancergenom. Hos två patienter med tjocktarmscancer identifierades flera storskaliga variationer som överlappar cancerrelaterade gener. Dessutom hittades flera korta somatiska varianter som påverkade gener i nästan all onkogena nätverk identifierade av TCGA. En patient uppvisade två nonsensmutationer på separata haplotyper i den välkända tjocktarmscancergenen APC, vilket påvisar vikten av haplotyp-upplöst analys för cancergenomik. 

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 99
Series
TRITA-CBH-FOU ; 2024:7
Keywords
droplets, linked-read sequencing, DNA barcoding, proteomics, genomics, single cell, single extracellular vesicle, single exosome, pipelines
National Category
Bioinformatics and Systems Biology Cell Biology Genetics
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-343460 (URN)978-91-8040-840-0 (ISBN)
Public defence
2024-03-15, Inghesalen, Widerströmska huset, Tomtebodavägen 18a, via Zoom: https://kth-se.zoom.us/j/69346261396, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2024-02-15

Available from: 2024-02-15 Created: 2024-02-14 Last updated: 2024-03-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Banijamali, MahsanHöjer, PontusNagy, AbelPaz Gomero, ElizabethStiller, ChristianeEriksson Karlström, AmelieAhmadian, Afshin
By organisation
Gene TechnologyScience for Life Laboratory, SciLifeLabProtein ScienceAlbanova VinnExcellence Center for Protein Technology, ProNovaProtein Engineering
In the same journal
Journal of Extracellular Vesicles
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 319 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf