Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Neutron scattering studies of hard metals
KTH, School of Industrial Engineering and Management (ITM), Materials Science and Engineering, Properties. (Advanced Materials Characterization)ORCID iD: 0000-0001-8463-6142
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since their discovery about 100 years ago, tools made of hard metals have been the enablers of development in various areas: from drilling subway lines for more sustainable cities to the machining of complex next-generation airplane engine parts for reduced CO2 emissions. An increase in properties of hard metals thus leads to efficient operations with shorter lead-time, less environmental footprint, and reduced cost. To tailor the as-sintered hard metal structure with desired properties and develop reliable modelling tools, it is critical to have statistically representative experimental data acquired in conditions mimicking the real processes for hard metals. However, to date, nano- and microstructural investigations of hard metals and related systems have been mainly focused on the lab-scale techniques, limiting the bulk-scale in-situ investigations. 

This thesis focuses on neutron scattering techniques and demonstrates how the utilization of small angle neutron scattering (SANS) techniques and neutron diffraction (ND) in a complementary manner with lab-scale techniques and computational tools can enhance the mechanistic understanding during processing of hard metals and related systems. Some of the presented information within the thesis is unique to neutron scattering experiments.

SANS experiments are used for the quantification of nano- and microstructural features including Co-rich binder pocket size, WC grain size, and size and volume fraction of (V,W)Cx interfacial layers. The quantitative data enables us to draw conclusions regarding the mechanism of grain coarsening inhibition in V-doped hard metals at different V additions. The findings indicate that the grain coarsening inhibition in V-doped hard metals originates from reduced WC/Co interface mobility and total driving force for coarsening. The complex nature of structural evolution at sintering temperatures is further investigated by in-situ SANS up to 1500 oC. Our results show that the size and volume fraction of interfacial layers strongly depend on the presence of bulk (V,W)Cx precipitates and V activity in the binder phase.

In-situ ND experiments during aging of (Ti,Zr)C-based systems provide time-resolved insights into the kinetics and structural evolution during phase separation at 1600 oC for 10 h. The results reveal that the decomposition of (Ti,Zr)C into TiC- and ZrC-rich phases can be significantly retarded by minor HfC or NbC additions. During decomposition, in line with the nucleation and growth process, no change is observed in the lattice parameter of ZrC-rich phase. In contrast, the lattice parameter of TiC-rich phase reduces with decomposition, resulting from TiC enrichment, i.e. it reaches equilibrium composition in the course of time. Furthermore, a novel multi-principal element carbide system (Ti,Zr,Hf,W)C with exceptional hardness is designed. Although the system has a miscibility gap, only minor decomposition is observed after 100 h aging at 1350 oC, where the formation of (Ti,W)C- and (Zr,Hf)C-rich decomposition products and WC precipitates occur. Such hindered decomposition enables the carbide system to preserve its high hardness.

In summary, by using neutron scattering techniques, this thesis contributes to a better understanding of nano- and microstructural evolution in hard metals and related systems during their processing at elevated temperatures. The thesis and appended papers also guide readers regarding the planning, e.g. sample preparation and sample environment selection, and data analysis of neutron scattering experiments. The thesis can thus serve as a starting point for the more widespread utilization of neutron scattering techniques by the hard metal industry.

Abstract [sv]

Sedan upptäckten av hårdmetall för cirka 100 år sedan har verktyg gjorda av hårdmetall varit avgörande för tillämpningar inom olika områden såsom borrning av tunnelbanelinjer för mer hållbara städer och bearbetning av nästa generations flygplansmotorer för minskade CO2-utsläpp. Förbättrade egenskaper hos hårdmetallen leder således till ökad effektivitet i olika verktygsoperationer med kortare ledtid, mindre miljöpåverkan och minskade kostnader för till exempel tillverkning. För att skräddarsy den sintrade hårdmetallstrukturen och skapa önskade egenskaper är det viktigt att ha statistiskt representativ experimentell data som uppmätts under förhållanden som efterliknar de verkliga processerna inom industrin. Hittills har dock nano- och mikrostrukturundersökningar av hårdmetaller och relaterade system huvudsakligen varit begränsade till laboratorietekniker, vilket begränsat in-situ-undersökningar av materialens bulk. 

Den här avhandlingen använder neutronspridningstekniker på olika relevanta hårdmetallsystem och visar på hur lågvinkelspridning (SANS) och neutrondiffraktion (ND) kan komplettera konventionella laboratorietekniker och beräkningsverktyg för att förbättra förståelsen av meknismer som styr materialets utveckling under olika processer. En del av datat som presenteras i avhandlingen kan endast uppnås med hjälp av neutronspridningsexperiment. 

SANS-experiment används för kvantifiering av nano- och mikrostrukturella egenskaper inklusive mätning av den Co-rika bindefasens storlek, kornstorlek hos WC och storleken och volymsfraktionen av (V,W)Cx-gränsskikt. Den kvantitativa datan gör det möjligt för oss att dra slutsatser angående mekanismen för inhibering av kornförgrovning i V-dopade hårdmetaller vid olika V-tillsatser. Resultaten tyder på att kornförgrovningsinhiberingen i V-dopade hårdmetaller härrör från minskad rörlighet av WC/Co-gränskikt och minskad total drivkraft för förgrovning. Den komplexa karaktären av den strukturell utveckling vid sintringstemperaturer undersöks ytterligare genom in-situ SANS upp till 1500 °C. Resultaten visar att storleken och volymsfraktionen hos gränsskikten starkt beror på närvaron av bulk (V,W)Cx-utskiljningar och V-aktivitet i bindefasen. 

In-situ ND-experiment under åldring av (Ti,Zr)C-baserade system ger tidsupplösta insikter i kinetiken och den strukturella utvecklingen under fasseparation vid 1600 °C under 10 timmar. Resultaten visar att sönderfallet av (Ti,Zr)C till TiC-och ZrC-rika faser kan fördröjas avsevärt genom små mängder av HfC eller NbC-tillsatser. Under sönderdelning observerades ingen förändring i gitterparametern för ZrC-rik fas. Däremot minskar gitterparametern i TiC-rik fas under sönderfallet, vilket är ett resultat av TiC-anrikning och liknar spinodalt sönderfall. Dessutom har en ny karbid i systemet (Ti,Zr,Hf,W)C designats och den har exceptionell hårdhet. Även om systemet har en blandningslucka så sker endast smärre sönderfall efter 100 timmars åldring vid 1350 °C genom bildning av (Ti,W)C-och (Zr,Hf)C-rika produkter och WC-utskiljningar. En sådan långsam sönderfallskinetik gör att karbiden bibehåller sin höga hårdhet.

Sammanfattningsvis, genom att använda neutronspridningstekniker bidrar denna avhandling till en bättre förståelse av nano- och mikrostrukturutveckling i hårdmetaller och relaterade system under olika industriellt relevanta processer vid hög temperatur. Avhandlingen och bifogade artiklar vägleder även läsarna angående förberedelser, t.ex. prov och provmiljö, och dataanalys efter neutronspridningsexperiment. Avhandlingen kan därmed vara en utgångspunkt och stimulera vidare användning av neutronspridningstekniker inom hårdmetallindustrin. 

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2021. , p. 72
Series
TRITA-ITM-AVL ; 2021:55
Keywords [en]
Hard metals, cemented carbides, small angle neutron scattering, neutron diffraction, in-situ characterization, grain coarsening, phase separation
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-306786ISBN: 978-91-8040-111-1 (print)OAI: oai:DiVA.org:kth-306786DiVA, id: diva2:1622957
Public defence
2022-01-28, Kollegiesalen 7 https://kth-se.zoom.us/webinar/register/WN_WxtkdjH2Q3OMCgbCbTrEjg, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Stiftelsen för Strategisk Forskning (SSF): SwedNESS - Sveriges neutronforskarskola (GSn15-0008)
Funder
Swedish Foundation for Strategic Research , GSn15-0008Available from: 2022-01-07 Created: 2021-12-27 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Very-small angle neutron scattering study on grain coarsening inhibition by V-doping of WC-Co composites
Open this publication in new window or tab >>Very-small angle neutron scattering study on grain coarsening inhibition by V-doping of WC-Co composites
Show others...
2019 (English)In: Scripta Materialia, ISSN 1359-6462, E-ISSN 1872-8456, Vol. 173, p. 106-109Article in journal (Refereed) Published
Abstract [en]

The mechanical properties of cemented carbides can be tuned by controlling WC grain coarsening and the simultaneous growth of the binder pocket size during the sintering. So far, bulk studies considering this phenomenon are scarce, but here, we report the first very-small angle neutron scattering (VSANS) study on cemented carbides. VSANS is supplemented with electron backscatter diffraction (EBSD) and the microstructural refinement by increasing V-doping (0, 0.02, 022, and 0.76 wt%) is quantified. The capability of VSANS as a non-destructive bulk probe for cemented carbides is shown, paving way for forthcoming in-situ studies.

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2019
Keywords
Small angle neutron scattering (SANS), Electron backscattering diffraction (EBSD), Cemented carbide, Grain growth, Grain refining
National Category
Materials Engineering
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-261928 (URN)10.1016/j.scriptamat.2019.08.005 (DOI)000487175400023 ()2-s2.0-85070562041 (Scopus ID)
Note

QC 20191015

Available from: 2019-10-15 Created: 2019-10-15 Last updated: 2022-06-26Bibliographically approved
2. Quantification of nano-scale interface structures to guide mechanistic modelling of WC grain coarsening inhibition in V-doped hard metals
Open this publication in new window or tab >>Quantification of nano-scale interface structures to guide mechanistic modelling of WC grain coarsening inhibition in V-doped hard metals
Show others...
2021 (English)In: Materials & design, ISSN 0264-1275, E-ISSN 1873-4197, Vol. 207, article id 109825Article in journal (Refereed) Published
Abstract [en]

The control of tungsten carbide (WC) grain coarsening using coarsening inhibitors is considered to be one of the most important advancements for hard metals, leading to metal cutting tools with increased performance. Until now, however, the grain coarsening inhibition mechanism for effective inhibitors such as V has been elusive, posing an obstacle to material optimization. This study serves to quantify the presence of nanoscale V-W-C over a wide range of V/Co ratios by small-angle neutron scattering (SANS). The experiments help to delineate how additions of V affect the nanostructure during sintering and result in smaller WC grains. In contrast to the common view that grain coarsening inhibition originates from the presence of stable nanoscale (V,W)C-x complexions formed at the WC/Co interfaces, we show that V segregates at the WC/Co interfaces already upon a minor addition of V and brings significant coarsening inhibition. Increasing additions of V result in the formation of (V,W)C-x complexions; and above 0.76 wt% V addition, where the coverage on WC grains is complete, no further reduction in average grain size is observed. Mechanistic modelling of grain coarsening reveals that grain coarsening inhibition is governed by the reduction of interface mobilities and total driving force for coarsening.

Place, publisher, year, edition, pages
Elsevier BV, 2021
Keywords
Hard metals, Grain refining, Small-angle neutron scattering (SANS), Computational thermodynamics, Mechanical properties
National Category
Metallurgy and Metallic Materials
Identifiers
urn:nbn:se:kth:diva-299477 (URN)10.1016/j.matdes.2021.109825 (DOI)000674374200004 ()2-s2.0-85106597441 (Scopus ID)
Note

QC 20210819

Available from: 2021-08-19 Created: 2021-08-19 Last updated: 2024-06-13Bibliographically approved
3. Understanding the competitive nanostructural evolution in V-doped hard metals by in-situ small-angle neutron scattering and thermodynamic-based modelling
Open this publication in new window or tab >>Understanding the competitive nanostructural evolution in V-doped hard metals by in-situ small-angle neutron scattering and thermodynamic-based modelling
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Grain coarsening inhibition in hard metals is regarded to be controlled by the formation of interface complexions. To date, however, direct experimental insights into the presence and evolution of interface complexions during the sintering of hard metals have been lacking. We here present in-situ small-angle neutron scattering (SANS) experiments up to 1500 °C and provide first-hand evidence on the thickness and volume fraction evolution of (V,W)Cx interface complexions in V-doped hard metals at various sintering temperatures. The experimental data is complemented by equilibrium thermodynamics predictions and a thermodynamic-based model to understand the mechanisms behind nanostructural evolution. We show that there indeed exist (V,W)Cx interface complexions at liquid-phase sintering temperatures; and their thickness and volume fraction are connected strongly to the presence of bulk (V,W)Cx precipitation, the V activity in the Co-rich binder phase, and the temperature. A model based on thermodynamics and the peculiar geometry of the investigated system reveals that the formation of (V,W)Cx bulk precipitates becomes energetically favorable over the thickening of complexions, explaining the reduction in complexion volume fraction within the stability range of bulk precipitation. The evolution of complexions follows the abrupt changes in V activity in the binder phase around solidus and liquidus temperatures; and, further temperature increments bring thinner complexions. The provided understanding of nanostructural evolution during sintering is expected to foster the further development of representative modelling tools.

Keywords
Hard metals, Grain refining, Small-angle neutron scattering (SANS), Computational thermodynamics
National Category
Metallurgy and Metallic Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-306774 (URN)
Projects
Swedish national graduate school in neutron scattering (SwedNess)Sintering non-homogeneous structures to enhance performance
Funder
Swedish Foundation for Strategic Research , GSn15-0008Swedish Foundation for Strategic Research , RMA15-0062
Note

QC 20211230

Available from: 2021-12-23 Created: 2021-12-23 Last updated: 2024-06-13Bibliographically approved
4. Manipulating the decomposition kinetics of a mixed carbide through small compositional adjustments
Open this publication in new window or tab >>Manipulating the decomposition kinetics of a mixed carbide through small compositional adjustments
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The mixed (Ti,Zr)C carbide solid solution offers significantly higher hardness compared to its monocarbide constituents owing to solid solution hardening. However, the (Ti,Zr)C system has a miscibility gap in which the carbide can decompose into TiC-rich and ZrC-rich phases during operation or processing at high temperature. This limits the utilization of (Ti,Zr)C, where structural stability at high temperatures is sought, but we here show how small additions of other carbides can significantly retard the decomposition. Using in-situ neutron diffraction during aging at 1600 °C for 10 h, we follow how the decomposition kinetics are affected by 1 mol% HfC and NbC additions. We further perform equilibrium thermodynamics calculations and scanning transmission electron microscopy experiments and report that the altered decomposition kinetics can stem from the narrower miscibility gap and different grain boundary and interface chemistry.  Although the decomposition morphology evinces that the phase separation proceeds through discontinuous precipitation, surprisingly, we find that the composition of the TiC-rich decomposition product nucleates with a composition far from equilibrium and evolves with time.

Keywords
Carbide, Phase separation, In-situ neutron diffraction, Computational thermodynamics
National Category
Ceramics and Powder Metallurgical Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-306775 (URN)
Projects
Swedish national graduate school in neutron scattering (SwedNess)Sintering non-homogeneous structures to enhance performance
Funder
Swedish Foundation for Strategic Research , GSn15-0008Swedish Foundation for Strategic Research , RMA15-0062
Note

QC 20211230

Available from: 2021-12-23 Created: 2021-12-23 Last updated: 2025-02-09Bibliographically approved
5. Design, synthesis, structure, and stability of novel multi-principal element (Ti,Zr,Hf,W)C ceramic with a miscibility gap
Open this publication in new window or tab >>Design, synthesis, structure, and stability of novel multi-principal element (Ti,Zr,Hf,W)C ceramic with a miscibility gap
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Multi-principal element carbide systems offer unprecedented mechanical properties such as high hardness and fracture toughness in as-sintered state. This makes them potential candidates for structural elements in high-temperature applications. Here we design a novel multi-principal element carbide system (Ti,Zr,Hf,W)C with a miscibility gap using computational tools and report on the formation of a single-phase (Ti,Zr,Hf,W)C after spark plasma sintering. The (Ti,Zr,Hf,W)C shows high nanohardness (33.1 GPa) and fracture toughness (5 MPa/m2) resulting from the high bonding energy and solid solution effects. Furthermore, aging studies at 1350 °C show that the single-phase is quite stable even though this temperature is within the predicted miscibility gap of the system. Detailed electron microscopy characterization shows that phase separation has initiated with minor decomposition after 100 h of aging at 1350 °C by forming rock-salt (Ti,W)C- and (Zr,Hf)C-rich phases as well as hexagonal WC precipitates. We show that the atoms distribute homogeneously through the single-phase (Ti,Zr,Hf,W)C grains in the as-sintered sample; and the (Ti,W)C- and (Zr,Hf)C-rich phases form a lamellar structure upon aging. The interlamellar spacing is considerably coarser than what has been previously found for the binary (Ti,Zr)C system. The decomposition kinetics, on the other hand, is sluggish due to the reduced driving force for phase decomposition. 

Keywords
Multi-principal element, Carbide, Miscibility gap, Computational thermodynamics, Mechanical properties
National Category
Ceramics and Powder Metallurgical Materials
Research subject
Materials Science and Engineering
Identifiers
urn:nbn:se:kth:diva-306776 (URN)
Projects
Swedish national graduate school in neutron scattering (SwedNess)Sintering non-homogeneous structures to enhance performanceNovel self-organized superhard carbides for application in cemented carbide composites
Funder
Swedish Foundation for Strategic Research , RMA15-0062Swedish Foundation for Strategic Research , 160801-250831
Note

QC 20211230

Available from: 2021-12-23 Created: 2021-12-23 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

Ahmet Bahadir Yildiz_kappa(22092 kB)867 downloads
File information
File name FULLTEXT01.pdfFile size 22092 kBChecksum SHA-512
42733545bd7d46e01d31cf2f3efc62dbc69e4b2f72fa591016f475b8a61e1b961e827a38ef5313d24b059254a2f536897ee2f7deb919694259621c688ec4cc7f
Type fulltextMimetype application/pdf

Other links

http://Vid fysisk närvaro eller Du som saknar dator/ datorvana kan kontakta service@itm.kth.se (English)

Search in DiVA

By author/editor
Yildiz, Ahmet Bahadir
By organisation
Properties
Metallurgy and Metallic Materials

Search outside of DiVA

GoogleGoogle Scholar
Total: 868 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1415 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf