Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Far red-shifted quantum dots extend the multicolour possibilities in STED nanoscopy
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab. (Ilaria Testa)ORCID iD: 0000-0002-3554-9322
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, Science for Life Laboratory, SciLifeLab. (Ilaria Testa)ORCID iD: 0000-0003-4005-4997
(English)Manuscript (preprint) (Other academic)
Keywords [en]
STED, microscopy, nanoscopy, quantum dots
National Category
Biophysics
Research subject
Biological Physics
Identifiers
URN: urn:nbn:se:kth:diva-305046OAI: oai:DiVA.org:kth-305046DiVA, id: diva2:1612731
Funder
EU, Horizon 2020, 638314
Note

QC 20211124

Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Automating STED microscopy for functional and structural live-cell imaging
Open this publication in new window or tab >>Automating STED microscopy for functional and structural live-cell imaging
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Optical microscopy imaging methods are today invaluable tools for studies in life sciences as they allow visualization of biological systems, tissues, cells, and sub-cellular compartments from millimetres down to nanometres. The invention and development of nanoscopy in the past 20 years has pushed fluorescence microscopy down to the nanoscale, reaching beyond the natural diffraction limit of light that does not allow focusing of visible light below sizes of around 200 nm, and into the realm of what was previously only thought possible with electron microscopy. The superior spatial resolution does however come at a price, including complex sample preparation, prolonged recording times, increased illumination doses, and limited fields of view. Stimulated emission depletion (STED) microscopy is one of the techniques that can deliver nanoscale resolution in a range of biological systems, but with all the above-mentioned costs. However, with the right sample the technique can deliver single nanometre spatial resolution, and with the right considerations live-cell imaging is more than possible.

In this thesis I present the development of a flexible STED microscope with methodological advancements in a range of directions that aim at facilitating the use of STED microscopy in life sciences and optimising the information extraction from the image data. The developments firstly focused on automation of the data acquisition, to allow the recording of imaging data both with a higher throughput and correlated with fast dynamic processes. I also implemented improved image analysis, both in terms of high throughput and precision as well as in connection with the data acquisition. Furthermore, I worked on control software development, with novel strategies to unify the control software of microscopes and to allow development and implementation of novel acquisition schemes. I also utilized novel fluorophores, to improve live-cell and multicolour possibilities and allow a wider range of applications in STED microscopy. Lastly, I developed a novel concept that takes advantage of STED. Additionally, I present applications of the microscope and image analysis in diverse biological samples such as mammalian cells, tissue sections, and bacteria. Altogether, this work aims at presenting new tools for an imaging technique that is already well-established, to contribute to further development, facilitation of novel experiments, and expansion of the range of applications.

Abstract [sv]

Ljusmikroskopi är idag ovärdeligt för forskare inom livsvetenskap för att visualisera och studera biologiska system, vävnader, celler, och beståndsdelar av celler på längdskalor från millimeter ner till nanometer. Uppfinnandet av nanoskopi och dess utveckling de senaste decennenierna har möjliggjort för fluorescensmikroskopi att nå den undre gränsen som tidigare var inom räckhåll endast med elektonmikroskopi. Anledningen till detta är diffraktionsgränsen som dikterar hur väl man kan fokusera elektromagnetisk strålning, och som i praktiken inte tillåter fokusering av synligt ljus till områden mindre än 200 nm i diameter. Nanoskopins överlägsna upplösning kommer däremot inte gratis, utan komplicerad förberedning av prover, förlängda inspelningstider, högre belysningsintensiteter, och begränsade synfält är några av de extra svårigheter som man måste ta hänsyn till. Stimulated emission depletion (STED) mikroskopi är en av dessa metoder som kan avbilda prover från biologiska system med nanometerupplösning, men med alla svårigheter som nämnts ovan. Men med rätt prov så kan metoden leverera en upplösning under 10 nm, och med rätt hänsyn tagen till cellöverlevnad så kan levande celler avbildas. 

I denna avhandling presenterar jag utvecklingen av ett STED-mikroskop med en rad tekniska framsteg som fokuserar på att underlätta användningen av STED-mikroskopi i livsvetenskap och optimera utvinningen av information från bilderna. Utvecklingen har fokuserat på automatisering, med möjligheten att samla in bilddata med både högre genomströmning och i samband med snabba processer i de biologiska systemen, men också förbättrad bildanalys både i form av högre genomströmning och precision samt i samband med datainsamlingen. Jag har också utvecklat kontrollmjukvara med nya strategier för att tillåta fortsatt utveckling och implementering av nya datainsamlingssätt för liknande mikroskop. Dessutom har jag utnyttjat nya fluorescenta molekyler för att förbättra möjligheten att använda tekniken i levande celler och med fler inspelningskanaler samt tillåta fler tillämpningssområden. Slutligen har jag utvecklat ett nytt koncept som tar hjälp av STED, och tillämpat mikroskopet och bildanalys på diverse biologiska system såsom däggdjursceller, vävnader och bakterier. Sammantaget siktar mitt arbete på att presentera nya verktyg för en redan etablerad mikroskopiteknik, för att bidra till fortsatt utveckling, underlätta nya typer av experiment och utöka bredden av tillämpningsområden. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 105
Series
TRITA-SCI-FOU ; 2021:52
Keywords
STED, microscopy, nanoscopy, super-resolution microscopy, automation, image analysis, fluorophores
National Category
Biophysics
Research subject
Biological Physics
Identifiers
urn:nbn:se:kth:diva-305055 (URN)978-91-8040-084-8 (ISBN)
Public defence
2021-12-17, Sal Petrén, Wargentinhuset https://kth-se.zoom.us/j/62958723396, Nobels väg 12B, Solna, 13:00 (English)
Opponent
Supervisors
Available from: 2021-11-19 Created: 2021-11-19 Last updated: 2022-09-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Alvelid, JonatanTesta, Ilaria
By organisation
BiophysicsScience for Life Laboratory, SciLifeLab
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 166 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf