Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
To adapt or not to adapt: consequences of adapting driver and traffic light agents
UFRGS, Porto Alegre, Brazil.
UFRGS, Porto Alegre, Brazil.
Örebro universitet, Akademin för naturvetenskap och teknik. (Modeling and Simulation Research Center)ORCID-id: 0000-0002-1470-6288
TU Berlin. (Institute for Land and Sea Transport)
2008 (engelsk)Inngår i: Adaptive agents and multi-agent systems III: adaptation and multi-agent learning : 5th, 6th, and 7th European Symposium,ALAMAS 2005-2007on Adaptive and Learning Agents and Multi-Agent Systems : revised selected papers / [ed] Karl Tuyls, Ann Nowe, Zahia Guessoum, New York: Springer , 2008, s. 1-14Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

One way to cope with the increasing traffic demand is to integrate standard solutions with more intelligent control measures. However, the result of possible interferences between intelligent control or information provision tools and other components of the overall traffic system is not easily predictable. This paper discusses the effects of integrating co-adaptive decision-making regarding route choices (by drivers) and control measures (by traffic lights). The motivation behind this is that optimization of traffic light control is starting to be integrated with navigation support for drivers. We use microscopic, agent-based modelling and simulation, in opposition to the classical network analysis, as this work focuses on the effect of local adaptation. In a scenario that exhibits features comparable to real-world networks, we evaluate different types of adaptation by drivers and by traffic lights, based on local perceptions. In order to compare the performance, we have also used a global level optimization method based on genetic algorithms.

sted, utgiver, år, opplag, sider
New York: Springer , 2008. s. 1-14
Serie
Lecture Notes in Computer Science ; 4865
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-5244DOI: 10.1007/978-3-540-77949-0_1ISBN: 978-3-540-77947-6 (tryckt)OAI: oai:DiVA.org:oru-5244DiVA, id: diva2:158352
Konferanse
5th, 6th, and 7th European Symposium, ALAMAS 2005-2007 on Adaptive and Learning Agents and Multi-Agent Systems
Tilgjengelig fra: 2009-02-02 Laget: 2009-02-02 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Klügl, Franziska
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 480 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf