Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Image reconstruction methods affect software-aided assessment of pathologies of [18F]flutemetamol and [18F]FDG brain-PET examinations in patients with neurodegenerative diseases
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.ORCID-id: 0000-0002-0384-8045
Radiation Physics, Skåne University Hospital, SE-221 85 Lund, Sweden.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för kirurgiska vetenskaper, Radiologi.
Clinical Physiology and Nuclear Medicine, Skåne University Hospital, SE-221 85 Lund, Sweden.
Vise andre og tillknytning
2020 (engelsk)Inngår i: NeuroImage: Clinical, E-ISSN 2213-1582, Vol. 28, artikkel-id 102386Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

PURPOSE: To assess how some of the new developments in brain positron emission tomography (PET) image reconstruction affect quantitative measures and software-aided assessment of pathology in patients with neurodegenerative diseases.

METHODS: PET data were grouped into four cohorts: prodromal Alzheimer's disease patients and controls receiving [18F]flutemetamol, and neurodegenerative disease patients and controls receiving [18F]FDG PET scans. Reconstructed images were obtained by ordered-subsets expectation maximization (OSEM; 3 iterations (i), 16/34 subsets (s), 3/5-mm filter, ±time-of-flight (TOF), ±point-spread function (PSF)) and block-sequential regularized expectation maximization (BSREM; TOF, PSF, β-value 75-300). Standardized uptake value ratios (SUVR) and z-scores were calculated (CortexID Suite, GE Healthcare) using cerebellar gray matter, pons, whole cerebellum and whole brain as reference regions.

RESULTS: In controls, comparable results to the normal database were obtained with OSEM 3i/16 s 5-mm reconstruction. TOF, PSF and BSREM either increased or decreased the relative uptake difference to the normal subjects' database within the software, depending on the tracer and chosen reference area, i.e. resulting in increased absolute z-scores. Normalizing to pons and whole brain for [18F]flutemetamol and [18F]FDG, respectively, increased absolute differences between reconstructions methods compared to normalizing to cerebellar gray matter and whole cerebellum when applying TOF, PSF and BSREM.

CONCLUSIONS: Software-aided assessment of patient pathologies should be used with caution when employing other image reconstruction methods than those used for acquisition of the normal database.

sted, utgiver, år, opplag, sider
2020. Vol. 28, artikkel-id 102386
Emneord [en]
PET image reconstruction, PET imaging, Quantification, Software-aided diagnosis, [(18)F]FDG, [(18)F]Flutemetamol
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-426111DOI: 10.1016/j.nicl.2020.102386ISI: 000600619100029PubMedID: 32882645OAI: oai:DiVA.org:uu-426111DiVA, id: diva2:1503538
Forskningsfinansiär
Swedish Research CouncilKnut and Alice Wallenberg FoundationMarianne and Marcus Wallenberg FoundationAlzheimerfondenThe Swedish Brain FoundationTilgjengelig fra: 2020-11-24 Laget: 2020-11-24 Sist oppdatert: 2024-01-17bibliografisk kontrollert
Inngår i avhandling
1. Evaluation of Regularized Image Reconstruction for Clinical Positron Emission Tomography
Åpne denne publikasjonen i ny fane eller vindu >>Evaluation of Regularized Image Reconstruction for Clinical Positron Emission Tomography
2022 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Positron emission tomography (PET) combined with computed tomography (CT) is a widely used noninvasive molecular imaging modality with a broad range of clinical applications in oncology, neurology, and cardiology. Producing imperative image quality and accurate quantification are important driving forces behind the technological advances within PET image reconstruction and system development. To ensure clinical quality and to understand how the modern state-of-the-art PET/CT systems and image reconstruction methods compare with older systems and reconstruction methods they need to be evaluated and assessed in a clinical setting. 

This thesis summarizes six studies assessing the effect of state-of-the-art image reconstruction methods and the introduction of digital PET on image quality and quantitative outcomes of clinical PET scans in oncology, neurology, and cardiology. The overall aim was to evaluate, optimize, and compare quantitative results of regularized image reconstruction with the current standard reconstruction method used in routine clinical practice, ordered subsets expectation maximization (OSEM).

The optimal setting of regularized image reconstruction by block-sequential regularized expectation maximization (BSREM) was found to be tracer dependent, and a potential clinical benefit in terms of image quality measures of BSREM over OSEM was found when applied for whole-body 18F-FDG, 68Ga-DOTATOC, 18F-fluorde, 11C-acetate, and 68Ga-PSMA-11 PET imaging. Software-aided assessment of neurodegenerative disease evaluated with 18F-FDG and 18F-flutemetamol was affected by image reconstruction methods and should be used with caution when employing other image reconstruction methods than those used for acquisition of the normal database. In contrast, changes in reconstruction settings were shown to not implicate myocardial blood flow (MBF) based on 15O-water PET analyzed using automated software. This shows that diagnostic MBF cutoff values can be consistently used for 15O-water. Also, large variations in image noise with three different image reconstruction methods did not impact quantitative cerebral blood flow (CBF) in white and gray matter volumes of interest with 15O-water brain PET to any large extent.

BSREM image reconstruction shows a great potential clinical benefit providing improved image quality measures with a subsequent possibility of shortening image acquisition durations and/or lowering amount of radioactivity needed for each examination.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2022. s. 64
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1812
Emneord
Positron emission tomography, PET/CT, molecular imaging, image reconstruction, regularized reconstruction, quantification, oncology, neurology, cardiology
HSV kategori
Forskningsprogram
Medicinsk radiofysik
Identifikatorer
urn:nbn:se:uu:diva-468126 (URN)978-91-513-1425-9 (ISBN)
Disputas
2022-04-08, H:son-Holmdahlsalen, Akademiska sjukhuset, Dag Hammarskjölds väg 8, Ing 100/101, 2 tr., Uppsala, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2022-03-16 Laget: 2022-02-20 Sist oppdatert: 2022-04-05

Open Access i DiVA

fulltext(2852 kB)237 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2852 kBChecksum SHA-512
dfa079989cc399b2735d580b8d6fdb13c575589a31bd4d628200f0bb059c2f266488d545920623e2d6368123a4b8cbcb36297d9d7c29400c9dcaa9c5a0cca007
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Lindström, ElinDanfors, TorstenLubberink, Mark
Av organisasjonen
I samme tidsskrift
NeuroImage: Clinical

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 237 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 88 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf