Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Neuroimaging, genetic, clinical, and demographic predictors of treatment response in patients with social anxiety disorder
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Ekselius: Psykiatri.ORCID-id: 0000-0003-2516-9075
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi.
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Barn- och ungdomspsykiatri.
Uppsala universitet, Humanistisk-samhällsvetenskapliga vetenskapsområdet, Samhällsvetenskapliga fakulteten, Institutionen för psykologi. Univ Southern Denmark, Dept Psychol, Odense, Denmark;Lund Univ, Dept Psychol, Lund, Sweden.
Vise andre og tillknytning
2020 (engelsk)Inngår i: Journal of Affective Disorders, ISSN 0165-0327, E-ISSN 1573-2517, Vol. 261, s. 230-237Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background: Correct prediction of treatment response is a central goal of precision psychiatry. Here, we tested the predictive accuracy of a variety of pre-treatment patient characteristics, including clinical, demographic, molecular genetic, and neuroimaging markers, for treatment response in patients with social anxiety disorder (SAD).

Methods: Forty-seven SAD patients (mean +/- SD age 33.9 +/- 9.4 years, 24 women) were randomized and commenced 9 weeks' Internet-delivered cognitive behavior therapy (CBT) combined either with the selective serotonin reuptake inhibitor (SSRI) escitalopram (20 mg daily [10 mg first week], SSRI+CBT, n= 24) or placebo (placebo+CBT, n= 23). Treatment responders were defined from the Clinical Global Impression-Improvement scale (CGI- I <= 2). Before treatment, patients underwent functional magnetic resonance imaging and the Multi-Source Interference Task taxing cognitive interference. Support vector machines (SVMs) were trained to separate responders from nonresponders based on pre-treatment neural reactivity in the dorsal anterior cingulate cortex (dACC), amygdala, and occipital cortex, as well as molecular genetic, demographic, and clinical data. SVM models were tested using leave-one-subject-out cross-validation.

Results: The best model separated treatment responders (n= 24) from nonresponders based on pre-treatment dACC reactivity (83% accuracy, P= 0.001). Responders had greater pre-treatment dACC reactivity than nonresponders especially in the SSRI+CBT group. No other variable was associated with clinical response or added predictive accuracy to the dACC SVM model.

Limitations: Small sample size, especially for genetic analyses. No replication or validation samples were available.

Conclusions: The findings demonstrate that treatment outcome predictions based on neural cingulate activity, at the individual level, outperform genetic, demographic, and clinical variables for medication-assisted Internet-delivered CBT, supporting the use of neuroimaging in precision psychiatry.

sted, utgiver, år, opplag, sider
Elsevier BV , 2020. Vol. 261, s. 230-237
Emneord [en]
Social phobia, SSRI, CBT, Personalized medicine, SVM, Pattern recognition
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-402003DOI: 10.1016/j.jad.2019.10.027ISI: 000499616400031PubMedID: 31655378OAI: oai:DiVA.org:uu-402003DiVA, id: diva2:1386862
Forskningsfinansiär
Swedish Research CouncilRiksbankens JubileumsfondForte, Swedish Research Council for Health, Working Life and WelfareTilgjengelig fra: 2020-01-20 Laget: 2020-01-20 Sist oppdatert: 2021-09-01bibliografisk kontrollert

Open Access i DiVA

fulltekst(633 kB)429 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 633 kBChecksum SHA-512
f82feea2e23d2a2436070cf888a7e34da176442f0d25c02e63fa876ab525dda41ed82512b9ab919b7ea421343ac29144d7b72d11d593c0a7e65b57f1c237fdce
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Frick, AndreasEngman, JonasAlaie, ImanBjörkstrand, JohannesGingnell, MalinLarsson, Elna-MarieFredrikson, MatsFurmark, Tomas
Av organisasjonen
I samme tidsskrift
Journal of Affective Disorders

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 429 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 421 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf