Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Quantifying bioturbation across coastal seascapes: Habitat characteristics modify effects of macrofaunal communities
Show others and affiliations
Number of Authors: 52019 (English)In: Journal of Sea Research, ISSN 1385-1101, E-ISSN 1873-1414, Vol. 152, article id 101766Article in journal (Refereed) Published
Abstract [en]

Bioturbation by benthic macrofauna communities plays a significant role in the setting and maintenance of important ecosystem functions and the delivery of associated ecosystem services. We investigated the context dependence of bioturbation performed by natural benthic communities in the coastal northern Baltic Sea by quantifying three bioturbation metrics (particle mixing intensity, surface sediment reworking and bioturbation depth) across 18 sites ranging from cohesive muddy sediments to non-cohesive coarse sands, while accounting for the complexity of natural communities and habitat characteristics. We identified two distinct patterns of bioturbation; in fine sediments bioturbation rates were highly variable and in coarse sediments bioturbation rates were less variable and characterized by lower maximal values. Using distance-based linear multiple regressions, we found that 75.5% of the variance in bioturbation rates in fine sediment could be explained by key functional groups/species abundance and/or biomass (i.e. biomass of the gallery-diffusors and abundances of biodiffusors, surface modifiers, conveyors and gallery diffusors, respectively). In coarse sediment, 47.8% of the variance in bioturbation rates could be explained by a combination of environmental factors (grain size, organic matter content, buried plant material) and faunal functional groups, although fauna alone explained only 13% of this variance. Bioturbation in fine sediments was therefore more predictable based on the composition of benthic fauna. In coarse sediment, the bioturbation activities of benthic fauna were strongly modified by habitat characteristics (including the presence of buried plant material, sediment organic content and grain size) whereas in fine sediments this was not the case. Our results therefore highlight that variability in spatial patterns of bioturbation is a result of complex relationships between macrofauna community structure, sediment type and other habitat characteristics, likely modifying bioturbation performance of individual fauna.

Place, publisher, year, edition, pages
2019. Vol. 152, article id 101766
Keywords [en]
Bioturbation, Benthic fauna, Context-dependence, Sediment, Habitat characteristics, Community functional composition
National Category
Biological Sciences Earth and Related Environmental Sciences
Identifiers
URN: urn:nbn:se:su:diva-175028DOI: 10.1016/j.seares.2019.101766ISI: 000486358800005OAI: oai:DiVA.org:su-175028DiVA, id: diva2:1366836
Available from: 2019-10-31 Created: 2019-10-31 Last updated: 2019-10-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Norkko, JoannaNorkko, Alf
By organisation
Stockholm University Baltic Sea Centre
In the same journal
Journal of Sea Research
Biological SciencesEarth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 48 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf