Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Stress Corrosion Cracking and Hydrogen Embrittlement of Type 316L Austenitic Stainless Steel Beneath MgCl2 and MgCl2: FeCl3 Droplets
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science. KTH Royal Inst Technol, Sch Engn Sci Chem Biotechnol & Hlth, Div Surface & Corros Sci, Drottning Kristinas Vag 51, S-10044 Stockholm, Sweden..
2019 (English)In: Corrosion, ISSN 0010-9312, E-ISSN 1938-159X, Vol. 75, no 6, p. 657-667Article in journal (Refereed) Published
Abstract [en]

The atmospheric corrosion, as well as environmentally assisted cracking behavior of 316L austenitic stainless steel (UNS S31603) beneath MgCl2 and MgCl2: FeCl3 droplets under elastic and elastic-plastic strain exposed for 6 months at 50 degrees C and 30% relative humidity were investigated. Shallow and deep corrosion sites with filiform corrosion along with stress corrosion cracking (SCC) were formed beneath the salt-laden droplets, and the potential role of hydrogen embrittlement (HE) and crevice corrosion in damage evolution elucidated. Elastic strain (0.1%) was sufficient to cause SCC cracking as well as HE under droplets with 145 mu g/cmth> of chloride, with the severity of cracking increasing with increasing chloride deposition density (CDD). Elastic-plastic strain (0.2%) increased the propensity to both corrosion and SCC/HE, with cracks seen under droplets having CDD as low as 14.5 mu g/cm(2). Elastic-plastic strain was further seen to facilitate and accelerate pitting corrosion, leading to pits with more penetration depth. The extent of corrosion and cracking increases with increasing chloride deposition density, with ferric ions having more severe effect, in particular promoting localized corrosion with multiple nucleation sites. The work reported here was brought into a larger context of stainless steel corrosion and discussed in light of better understanding atmospheric corrosion of structural components such as nuclear waste storage containers.

Place, publisher, year, edition, pages
NATL ASSOC CORROSION ENG , 2019. Vol. 75, no 6, p. 657-667
Keywords [en]
atmospheric corrosion, austenitic stainless steel, crevice corrosion, hydrogen-assisted cracking, pitting corrosion, strain, stress corrosion cracking
National Category
Corrosion Engineering
Identifiers
URN: urn:nbn:se:kth:diva-254008DOI: 10.5006/3090ISI: 000469356600009Scopus ID: 2-s2.0-85069692291OAI: oai:DiVA.org:kth-254008DiVA, id: diva2:1342856
Note

QC 20190814

Available from: 2019-08-14 Created: 2019-08-14 Last updated: 2019-08-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Örnek, Cem
By organisation
Surface and Corrosion Science
In the same journal
Corrosion
Corrosion Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf