Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems: an exploratory work
Linnéuniversitetet, Fakulteten för teknik (FTK), Institutionen för datavetenskap och medieteknik (DM).
2019 (engelsk)Independent thesis Advanced level (degree of Master (One Year)), 10 poäng / 15 hpOppgave
Abstract [en]

Self-adaptive systems have limited time to adjust their configurations whenever their adaptation goals, i.e., quality requirements, are violated due to some runtime uncertainties. Within the available time, they need to analyze their adaptation space, i.e., a set of configurations, to find the best adaptation option, i.e., configuration, that can achieve their adaptation goals. Existing formal analysis approaches find the best adaptation option by analyzing the entire adaptation space. However, exhaustive analysis requires time and resources and is therefore only efficient when the adaptation space is small. The size of the adaptation space is often in hundreds or thousands, which makes formal analysis approaches inefficient in large-scale self-adaptive systems. In this thesis, we tackle this problem by presenting an online learning approach that enables formal analysis approaches to analyze large adaptation spaces efficiently. The approach integrates with the standard feedback loop and reduces the adaptation space to a subset of adaptation options that are relevant to the current runtime uncertainties. The subset is then analyzed by the formal analysis approaches, which allows them to complete the analysis faster and efficiently within the available time. We evaluate our approach on two different instances of an Internet of Things application. The evaluation shows that our approach dramatically reduces the adaptation space and analysis time without compromising the adaptation goals.

sted, utgiver, år, opplag, sider
2019. , s. 53
Emneord [en]
Self-Adaptive Systems, Self-Adaptation, Architecture-Based Adaptation, Autonomous Systems, Cyber-Physical Systems, CPS, DeltaIoT, IoT, ActivFORMS, MAPE-K Feedback Loop, Runtime Uncertainties, Adaptation Space, Analysis, Machine Learning, Artificial Neural Network, ANN, Online Learning, Deep Learning, Online Supervised Learning, Incremental Learning, Classification, Multi-Layer Perceptron, MLP
HSV kategori
Identifikatorer
URN: urn:nbn:se:lnu:diva-87117OAI: oai:DiVA.org:lnu-87117DiVA, id: diva2:1341195
Fag / kurs
Computer Science
Utdanningsprogram
Software Technology Programme, Master Programme, 60 credits
Presentation
2019-06-05, D1167, Växjö, 11:00 (engelsk)
Veileder
Examiner
Tilgjengelig fra: 2019-08-15 Laget: 2019-08-07 Sist oppdatert: 2019-08-15bibliografisk kontrollert

Open Access i DiVA

fulltext(4406 kB)40 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 4406 kBChecksum SHA-512
c2b361d827ec507ad5a9d804cf2710e831b6d73e71b567ffc71094cee3e2f95aca5725e1556a23318c952ba25c06d2bf20e87dec31e61899d347d412753acf2d
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 40 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 581 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf