Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Functional connectivity underlying hedonic response to food in female adolescents with atypical AN: The role of somatosensory and salience networks
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Schiöth: Functional Pharmacology.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Atypical Anorexia Nervosa (AN) usually occurs during adolescence. Patients are often in the normal-weight range at diagnosis, however they often present with signs of medical complications and severe restraint over eating, body dissatisfaction, and low self-esteem. We investigated functional circuitry underlying the hedonic response in 28 female adolescent patients diagnosed with atypical AN and 33 healthy controls. Participants were shown images of food with high (HC) or low (LC) caloric content in alternating blocks during functional MRI. The HC > LC contrast was calculated. Based on previous literature on full-threshold AN, we hypothesized that patients would exhibit increased connectivity in areas involved in sensory processing and bottom-up responses, coupled to increased connectivity from areas related to top-down inhibitory control, compared with controls. Patients showed increased connectivity in pathways related to multimodal somatosensory processing and memory retrieval. The connectivity was on the other hand decreased in patients in salience and attentional networks, and in a wide cerebello-occipital network. Our study was the first investigation of food-related neural response in atypical AN. Our findings support higher somatosensory processing in patients in response to HC food images compared with controls, however HC food was less efficient than LC food in engaging patients’ bottom-up salient responses, and was not associated with connectivity increases in inhibitory control regions. These findings suggest that the psychopathological mechanisms underlying food restriction in atypical AN differ from full-threshold AN. Elucidating the mechanisms underlying the development and maintenance of eating behaviour in atypical AN might help designing specific treatment strategies.

National Category
Psychiatry
Identifiers
URN: urn:nbn:se:uu:diva-385193OAI: oai:DiVA.org:uu-385193DiVA, id: diva2:1323338
Available from: 2019-06-12 Created: 2019-06-12 Last updated: 2019-07-30
In thesis
1. Brain Structure and Function in Adolescents with Atypical Anorexia Nervosa
Open this publication in new window or tab >>Brain Structure and Function in Adolescents with Atypical Anorexia Nervosa
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Atypical anorexia nervosa (AAN) has a high incidence in adolescents, resulting in significant morbidity and mortality. The weight loss is generally less pronounced than that experienced in full-syndrome anorexia nervosa (AN), but the medical consequences can be as severe. Neuroimaging could improve our knowledge regarding the pathogenesis of eating disorders, however research on adolescents is limited, and no neuroimaging studies have been conducted in AAN. In paper I, we investigated brain structure through a voxel-based morphometry analysis in 22 drug-naïve adolescent females newly-diagnosed with AAN, and 38 age- and sex-matched healthy controls. In Paper II, we investigated white matter microstructural integrity on 25 drug-naïve adolescent patients with AAN and 25 healthy controls, using diffusion tensor imaging with a tract-based spatial statistics approach. No differences in brain structure could be detected, indicating preserved regional grey matter volumes and white matter diffusivity in patients with AAN compared to controls. These findings suggest that previous observations of brain structure alterations in full syndrome AN may constitute state-related consequences of severe underweight. Alternatively, the preservation of brain structure might indeed differentiate AAN from AN. In paper III, we investigated resting-state functional connectivity in 22 drug-naïve adolescent patients with AAN, and 24 healthy controls. We report reduced connectivity in patients in brain areas involved in face-processing and social cognition, while an increased connectivity, correlating with depressive symptoms, was found in areas involved in the multimodal integration of sensory stimuli, aesthetic judgment, and social rejection anxiety. These findings point toward a core role for an altered development of socio-emotional skills in the pathogenesis of AAN. In Paper IV, we investigated neural connectivity underlying visual processing of foods with different caloric content in a sample of 28 adolescent females diagnosed with AAN, and 33 age- and sex-matched healthy controls. Our results showed higher connectivity in patients in pathways related to the integration of sensory input and memory retrieval, in response to food with high caloric content. This, however, was coupled to lower connectivity in salience and attentional networks, and lower connectivity between areas involved in visual food cues processing and appetite regulatory regions. Thus, despite food with high caloric content is associated to greater processing of somatosensory information in patients, it is attributed less salience and engages patients’ attention less than food with low caloric content.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2019. p. 68
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1585
Keywords
MRI, functional MRI, fMRI, magnetic resonance imaging, neuroimaging, brain imaging, anorexia nervosa, eating disorders, neuroscience, adolescents
National Category
Psychiatry Radiology, Nuclear Medicine and Medical Imaging Neurosciences
Research subject
Medical Science; Neuroscience
Identifiers
urn:nbn:se:uu:diva-389865 (URN)978-91-513-0702-2 (ISBN)
Public defence
2019-09-18, Room B42, Uppsala biomedicinska centrum (BMC), Husargatan 3, Uppsala, 10:00 (English)
Opponent
Supervisors
Available from: 2019-08-28 Created: 2019-07-30 Last updated: 2019-09-17

Open Access in DiVA

No full text in DiVA

By organisation
Schiöth: Functional Pharmacology
Psychiatry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 107 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf