Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biomechanical Adaptations and Performance Indicators in Short Trail Running
Mid Sweden Univ, Dept Hlth Sci, Swedish Winter Sports Res Ctr, Ostersund, Sweden.;Swedish Sports Confederat, Stockholm, Sweden..
KTH, School of Engineering Sciences (SCI).ORCID iD: 0000-0001-5234-6554
Swiss Fed Inst Sport, Dept Elite Sport, Magglingen, Switzerland..
Univ Salzburg, Dept Sport & Exercise Sci, Salzburg, Austria..
2019 (English)In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 10, article id 506Article in journal (Refereed) Published
Abstract [en]

Our aims were to measure anthropometric and oxygen uptake ((V)over dot O-2) variables in the laboratory, to measure kinetic and stride characteristics during a trail running time trial, and then analyse the data for correlations with trail running performance. Runners (13 men, 4 women: mean age: 29 +/- 5 years; stature: 179.5 +/- 0.8 cm; body mass: 69.1 +/- 7.4 kg) performed laboratory tests to determine (V)over dot O-2 (max), running economy (RE), and anthropometric characteristics. On a separate day they performed an outdoor trail running time trial (two 3.5 km laps, total climb: 486 m) while we collected kinetic and time data. Comparing lap 2 with lap 1 (19:40 +/- 1:57 min vs. 21:08 +/- 2:09 min, P < 0.001), runners lost most time on the uphill sections and least on technical downhills (-2.5 +/- 9.1 s). Inter-individual performance varied most for the downhills (CV > 25%) and least on flat terrain (CV < 10%). Overall stride cycle and ground contact time (GCT) were shorter in downhill than uphill sections (0.64 +/- 0.03 vs. 0.84 +/- 0.09 s; 0.26 +/- 0.03 vs. 0.46 +/- 0.90 s, both P < 0.001). Force impulse was greatest on uphill (248 +/- 46 vs. 175 +/- 24 Ns, P < 0.001) and related to GCT (r = 0.904, P < 0.001). Peak force was greater during downhill than during uphill running (1106 +/- 135 vs. 959 +/- 104 N, P < 0.01). Performance was related to absolute and relative (V)over dot O-2 (max) (P < 0.01), vertical uphill treadmill speed (P < 0.001) and fat percent (P < 0.01). Running uphill involved the greatest impulse per step due to longer GCT while downhill running generated the highest peak forces. (V)over dot O-2 (max), vertical running speed and fat percent are important predictors for trail running performance. Performance between runners varied the most on downhills throughout the course, while pacing resembled a reversed J pattern. Future studies should focus on longer competition distances to verify these findings and with application of measures of 3D kinematics.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2019. Vol. 10, article id 506
Keywords [en]
downhill running, foot forces, ground contact time, pacing, stride frequency
National Category
Sport and Fitness Sciences
Identifiers
URN: urn:nbn:se:kth:diva-251708DOI: 10.3389/fphys.2019.00506ISI: 000466549100002Scopus ID: 2-s2.0-85068357933OAI: oai:DiVA.org:kth-251708DiVA, id: diva2:1316660
Note

QC 20190520

Available from: 2019-05-20 Created: 2019-05-20 Last updated: 2019-10-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Svarén, Mikael
By organisation
School of Engineering Sciences (SCI)
In the same journal
Frontiers in Physiology
Sport and Fitness Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 13 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf