Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robust Knowledge Transfer in Learning Under Privileged Information Framework
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. (Farmbio)
Statisticon AB.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. (Farmbio)ORCID-id: 0000-0002-8083-2864
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Learning Under Privileged Information (LUPI) enables the inclusion of additional (privileged) information when training machine learning models; data that is not available when making predictions. The methodology has been successfully applied to a diverse set of problems from various fields. SVM+ was the first realization of the LUPI paradigm which showed fast convergence but did not scale well. To address the scalability issue, knowledge  transfer  approaches were proposed to estimate privileged information from standard features in order to construct improved decision rules.Most available knowledge transfer methods use regression techniques and the same data for approximating the privileged features as for learning the transfer function.Inspired by the cross-validation approach, we propose to partition the training data into K folds and use each fold for learning a transfer function and the remaining folds for approximations of privileged features - we refer to this a robust knowledge transfer. We conduct empirical evaluation considering four different experimental setups using one synthetic and three real datasets. These experiments demonstrate that our approach yields improved accuracy as compared to LUPI with standard knowledge transfer.

Emneord [en]
Knowledge Transfer, Machine Learning, LUPI, Privileged Information
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:uu:diva-383240OAI: oai:DiVA.org:uu-383240DiVA, id: diva2:1315101
Tilgjengelig fra: 2019-05-10 Laget: 2019-05-10 Sist oppdatert: 2019-05-15bibliografisk kontrollert

Open Access i DiVA

fulltext(237 kB)41 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 237 kBChecksum SHA-512
64a2d32c493c42699a99c6439a15d877d70a1fee24030165b4533ccf08febdf221c554dff2ab0873f3b5f883c20f9c16bb0d0c425fb11683fc6a9c70b8d648a1
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Gauraha, NiharikaSpjuth, Ola
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 41 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 222 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf