Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Sparsity promoting super-resolution coverage segmentation by linear unmixing in presence of blur and noise
Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia.ORCID-id: 0000-0001-7312-8222
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Bildanalys och människa-datorinteraktion. Serbian Acad Arts & Sci, Math Inst, Belgrade, Serbia.ORCID-id: 0000-0002-6041-6310
2019 (engelsk)Inngår i: Journal of Electronic Imaging (JEI), ISSN 1017-9909, E-ISSN 1560-229X, Vol. 28, nr 1, artikkel-id 013046Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We present a segmentation method that estimates the relative coverage of each pixel in a sensed image by each image component. The proposed super-resolution blur-aware model (utilizes a priori knowledge of the image blur) for linear unmixing of image intensities relies on a sparsity promoting approach expressed by two main requirements: (i) minimization of Huberized total variation, providing smooth object boundaries and noise removal, and (ii) minimization of nonedge image fuzziness, responding to an assumption that imaged objects are crisp and that fuzziness is mainly due to the imaging and digitization process. Edge fuzziness due to partial coverage is allowed, enabling subpixel precise feature estimates. The segmentation is formulated as an energy minimization problem and solved by the spectral projected gradient method, utilizing a graduated nonconvexity scheme. Quantitative and qualitative evaluation on synthetic and real multichannel images confirms good performance, particularly relevant when subpixel precision in segmentation and subsequent analysis is a requirement. (C) 2019 SPIE and IS&T

sted, utgiver, år, opplag, sider
IS&T & SPIE , 2019. Vol. 28, nr 1, artikkel-id 013046
Emneord [en]
fuzzy segmentation, super-resolution, deconvolution, linear unmixing, total variation, energy minimization
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-379780DOI: 10.1117/1.JEI.28.1.013046ISI: 000460119700046OAI: oai:DiVA.org:uu-379780DiVA, id: diva2:1297782
Forskningsfinansiär
Swedish Research Council, 2014-4231Swedish Research Council, 2015-05878Swedish Research Council, 2017-04385Tilgjengelig fra: 2019-03-21 Laget: 2019-03-21 Sist oppdatert: 2019-03-21bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Lindblad, JoakimSladoje, Natasa
Av organisasjonen
I samme tidsskrift
Journal of Electronic Imaging (JEI)

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 60 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf