Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spin-orbit coupling in enzymatic reactions and the role of spin in biochemistry
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-1763-9383
2017 (English)In: Handbook of Computational Chemistry, Springer International Publishing , 2017, p. 1557-1587Chapter in book (Other academic)
Abstract [en]

We review the general concept of nonadiabatic quantum spin transitions in biochemistry. A few important examples are highlighted to illustrate the concept: the role of spin effects in oxidases, cytochromes, in dioxygen binding to heme, in photosynthesis, and in tentative models of consciousness. The most thoroughly studied of these effects are connected with dioxygen activation by enzymes. Discussion on the mechanisms of overcoming spin prohibitions in dioxygen reactions with flavin-dependent oxygenases and with hemoglobin and myoglobin is presented in some detail. We consider spin-orbit coupling (SOC) between the starting triplet state from the entrance channel of the O2 binding to glucose oxidase, to ferrous heme, and the final singlet open-shell state in these intermediates. Both triplet (T) and singlet (S) states in these examples are dominated by the radical-pair structures D+O2induced by charge transfer; the peculiarities of their orbital configurations are essential for the SOC analysis. An account of specific SOC in the open πg-shell of dioxygen helps to explain the probability of T-S transitions in the active site near the transition state. Simulated potential energy surface cross-sections along the reaction coordinates for these multiplets, calculated by density functional theory, agree with the notion of a relatively strong SOC induced inside the oxygen moiety by an orbital angular momentum change in the πg-shell during the T-S transition. The SOC model explains well the efficient spin inversion during the O2 binding with heme and glucose oxidase, which constitutes a key mechanism for understanding metabolism. Other examples of nontrivial roles of spin effects in biochemistry are briefly discussed. 

Place, publisher, year, edition, pages
Springer International Publishing , 2017. p. 1557-1587
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-236861DOI: 10.1007/978-3-319-27282-5_29Scopus ID: 2-s2.0-85046005818ISBN: 9783319272825 (print)ISBN: 9783319272818 (print)OAI: oai:DiVA.org:kth-236861DiVA, id: diva2:1272155
Note

QC 20181218

Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2018-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Minaev, Boris F.Ågren, HansMinaeva, Valentina A.
By organisation
Theoretical Chemistry and Biology
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf