Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Prediction of coal grindability based on petrography, proximate and ultimate analysis using multiple regression and artificial neural network models
Department of Mining Engineering, Science and Research Branch,Islamic Azad University.ORCID-id: 0000-0002-2265-6321
Center for Applied Energy Research, University of Kentucky, USA.
Department of Mining Engineering, Science and Research Branch,Islamic Azad University.
Department of Mining Engineering, Research and Science Campus, Islamic Azad University, Iran.
Vise andre og tillknytning
2008 (engelsk)Inngår i: Fuel Processing Technology, ISSN 0378-3820, Vol. 89, nr 1, s. 13-20Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The effects of proximate and ultimate analysis, maceral content, and coal rank (Rmax) for a wide range of Kentucky coal samples from calorific value of 4320 to 14960 (BTU/lb) (10.05 to 34.80 MJ/kg) on Hardgrove Grindability Index (HGI) have been investigated by multivariable regression and artificial neural network methods (ANN). The stepwise least square mathematical method shows that the relationship between (a) Moisture, ash, volatile matter, and total sulfur; (b) ln (total sulfur), hydrogen, ash, ln ((oxygen + nitrogen)/carbon) and moisture; (c) ln (exinite), semifusinite, micrinite, macrinite, resinite, and Rmax input sets with HGI in linear condition can achieve the correlation coefficients (R2) of 0.77, 0.75, and 0.81, respectively. The ANN, which adequately recognized the characteristics of the coal samples, can predict HGI with correlation coefficients of 0.89, 0.89 and 0.95 respectively in testing process. It was determined that ln (exinite), semifusinite, micrinite, macrinite, resinite, and Rmax can be used as the best predictor for the estimation of HGI on multivariable regression (R2 = 0.81) and also artificial neural network methods (R2 = 0.95). The ANN based prediction method, as used in this paper, can be further employed as a reliable and accurate method, in the hardgrove grindability index prediction.

sted, utgiver, år, opplag, sider
2008. Vol. 89, nr 1, s. 13-20
Emneord [en]
Hardgrove grindability index, Coal petrography, Coal rank, Ultimate and proximate analysis, Artificial neural network
HSV kategori
Identifikatorer
URN: urn:nbn:se:ltu:diva-72303DOI: 10.1016/j.fuproc.2007.06.004ISI: 000252668100003Scopus ID: 2-s2.0-36749037942OAI: oai:DiVA.org:ltu-72303DiVA, id: diva2:1272004
Tilgjengelig fra: 2018-12-18 Laget: 2018-12-18 Sist oppdatert: 2020-03-09bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Chelgani, Saeed Chehreh

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 231 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf