Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Evaluating parameters for ligand-based modeling with random forest on sparse data sets
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap.ORCID-id: 0000-0002-8083-2864
2018 (engelsk)Inngår i: Journal of Cheminformatics, ISSN 1758-2946, E-ISSN 1758-2946, Vol. 10, artikkel-id 49Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Ligand-based predictive modeling is widely used to generate predictive models aiding decision making in e.g. drug discovery projects. With growing data sets and requirements on low modeling time comes the necessity to analyze data sets efficiently to support rapid and robust modeling. In this study we analyzed four data sets and studied the efficiency of machine learning methods on sparse data structures, utilizing Morgan fingerprints of different radii and hash sizes, and compared with molecular signatures descriptor of different height. We specifically evaluated the effect these parameters had on modeling time, predictive performance, and memory requirements using two implementations of random forest; Scikit-learn as well as FEST. We also compared with a support vector machine implementation. Our results showed that unhashed fingerprints yield significantly better accuracy than hashed fingerprints (p <= 0.05), with no pronounced deterioration in modeling time and memory usage. Furthermore, the fast execution and low memory usage of the FEST algorithm suggest that it is a good alternative for large, high dimensional sparse data. Both support vector machines and random forest performed equally well but results indicate that the support vector machine was better at using the extra information from larger values of the Morgan fingerprint's radius.

sted, utgiver, år, opplag, sider
BMC , 2018. Vol. 10, artikkel-id 49
Emneord [en]
Random forest, Support vector machines, Sparse representation, Fingerprint, Machine learning
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-368445DOI: 10.1186/s13321-018-0304-9ISI: 000447254000001PubMedID: 30306349OAI: oai:DiVA.org:uu-368445DiVA, id: diva2:1269066
Forskningsfinansiär
Knut and Alice Wallenberg FoundationSwedish Research Council FormasSwedish National Infrastructure for Computing (SNIC), SNIC 2017/7-241Tilgjengelig fra: 2018-12-07 Laget: 2018-12-07 Sist oppdatert: 2018-12-07bibliografisk kontrollert

Open Access i DiVA

fulltext(1966 kB)88 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1966 kBChecksum SHA-512
9741ab66adf491d60186185fb0217851fbd4008873c92e439fcde8e042e7f28ca34983e0d39a876e0dcfc987e26e9021713d8aa9cfde97a386868d767a9f7180
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Alvarsson, JonathanSpjuth, Ola
Av organisasjonen
I samme tidsskrift
Journal of Cheminformatics

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 88 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 83 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf