Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
The influence of the falx and tentorium: A 3D computational study of impacts using detailed FE head models
KTH, Skolan för teknik och hälsa (STH), Neuronik.ORCID-id: 0000-0001-9785-2071
KTH, Skolan för teknik och hälsa (STH), Neuronik.
KTH, Skolan för teknik och hälsa (STH), Neuronik.ORCID-id: 0000-0003-0125-0784
(Engelska)Manuskript (Övrigt vetenskapligt)
Abstract [en]

The influence of the falx and tentorium on biomechanics of the head during impact was studied in the current study with finite element analysis. A study of such has not been done previously in 3D. Three detailed 3D finite element models were created based on images of a healthy person with a normal size head. Two of the models contained the addition of falx and tentorium with different material properties. The models were subjected to coronal and sagittal rotational impulses applied to the skull. The acceleration of the impulse was large enough to theoretically induce diffuse axonal injuries (DAI). Strain distributions in the brain of the different models were compared and the findings indicated that the falx induced large strain to the surrounding brain tissues, especially to the corpus callosum in coronal rotation. The tentorium seemed to constrain motion of the cerebellum while inducing large strain in the brain stem in both rotations. Lower strains in the different lobes while higher strains in the brain stem and corpus callosum which are the classical site for DAI, were found in the model with falx and tentorium. The result indicated the need of modeling dura mater with non-linear elastic material model, which otherwise would have been too stiff. The non-sliding interface of the protruding dura mater is suspected to induce too large strains in adjacent areas and needed to investigate further.

Nyckelord [en]
Finite element model, biomechanics, falx, tentorium
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
URN: urn:nbn:se:kth:diva-9582OAI: oai:DiVA.org:kth-9582DiVA, id: diva2:126645
Anmärkning
QC 20100811Tillgänglig från: 2008-11-19 Skapad: 2008-11-19 Senast uppdaterad: 2010-08-11Bibliografiskt granskad
Ingår i avhandling
1. Generation of Patient Specific Finite Element Head Models
Öppna denna publikation i ny flik eller fönster >>Generation of Patient Specific Finite Element Head Models
2008 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Traumatic brain injury (TBI) is a great burden for the society worldwide and the statisticsindicates a relative constant total annual rate of TBI. It seems that the present preventativestrategies are not sufficient. To be able to develop head safety measures against accidents ine.g. sports or automobile environment, one needs to understand the mechanism behindtraumatic brain injuries. Through the years, different test subjects have been used, such ascadavers, animals and crash dummies, but there are ethical issues in animal and human testingusing accelerations at injury-level and crash dummies are not completely human-like. In aFinite Element (FE) head model, the complex shape of the intracranial components can bemodeled and mechanical entities, such as pressure, stresses and strains, can be quantified atany theoretical point. It is suggested that the size of the head, the skull-brain boundarycondition, the heterogeneity, and the tethering and suspension system can alter the mechanicalresponse of the brain. It can be seen that the shape of the skull, the composition of gray andwhite matter, the distribution of sulci, the volume of cerebrospinal fluid and geometry of othersoft tissues varies greatly between individuals. All this, suggests the development of patientspecific FE head models.A method to generate patient specific FE head model was contrived based on the geometryfrom Magnetic Resonance Imaging (MRI) scans. The geometry was extracted usingexpectation maximization classification and the mesh of the FE head model was constructedby directly converting the pixel into hexahedral elements. The generated FE model had goodelement quality, the geometrical details were more than 90 % accurate and it correlated wellwith experimental data of relative brain-skull motion. The method was thought to beautomatic but some hypothetically important anatomical structures were not possible to beextracted from medical images. This leads to investigations on the biomechanical influence ofthe cerebral vasculature, the falx and tentorium complex. It was found that biomechanicalinfluence of the cerebral vasculature was minimal, due to the convoluting geometry and thenon-linear elastic material properties of the blood vessels. It suggests that futurebiomechanical FE head model does not necessarily have to include these blood vessels. Theinclusion of falx and tentorium in an FE head model has on the other hand a substantialbiomechanical influence by affecting its surrounding tissue. Therefore, in the investigation ofthe biomechanical influence of the sulci, the falx and tentorium were manually added to theanatomically detailed 3D FE head model. The biomechanical influence of the sulci haspreviously not been studied in 3D and the results indicated an obvious reduction of the strainin the model with sulci compared to the model without sulci in all simulations, and mostinteresting was the consistent reduction of strain in the corpus callosum. The development ofgyri not only produces a larger area for synapses but also forms the sulci to protect the brainfrom external forces.Based on the results, a patient specific FE head model for traumatic brain injury predictionshould at least include the skull, cerebrospinal fluid, falx, tentorium and pia mater, in additionto the brain. With these anatomically detailed 3D models, the injury biomechanics can bebetter understood. Hopefully, the burden of TBI to the society can be alleviated with betterprotective systems and improved understanding of the patients’ condition and hence, theirmedical treatments

Ort, förlag, år, upplaga, sidor
Stockholm: KTH, 2008. s. vi, 39
Serie
Trita-STH : report, ISSN 1653-3836 ; 2008:7
Nyckelord
Injury Prevention, Patient Specific, Finite Element Head Model, Anatomical Structures
Nationell ämneskategori
Teknik och teknologier
Identifikatorer
urn:nbn:se:kth:diva-9585 (URN)978-91-7415-191-6 (ISBN)
Disputation
2008-12-12, Lecture hall 3-221, Alfred Nobels Allé 10, Huddinge, 13:00 (Engelska)
Opponent
Handledare
Anmärkning
QC 20100811Tillgänglig från: 2008-11-21 Skapad: 2008-11-19 Senast uppdaterad: 2010-08-11Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Sök vidare i DiVA

Av författaren/redaktören
Ho, Johnsonvon Holst, HansKleiven, Svein
Av organisationen
Neuronik
Teknik och teknologier

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 465 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf