Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Seq2Seq RNNs and ARIMA models for Cryptocurrency Prediction: A Comparative Study
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
2018 (Engelska)Ingår i: Proceedings of SIGKDD Workshop on Fintech (SIGKDD Fintech’18), Association for Computing Machinery (ACM), 2018, artikel-id 4Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Cyrptocurrency price prediction has recently become an alluring topic, attracting massive media and investor interest. Traditional models, such as Autoregressive Integrated Moving Average models (ARIMA) and models with more modern popularity, such as Recurrent Neural Networks (RNN’s) can be considered candidates for such financial prediction problems, with RNN’s being capable of utilizing various endogenous and exogenous input sources. This study compares the model performance of ARIMA to that of a seq2seq recurrent deep multi-layer neural network (seq2seq) utilizing a varied selection of inputs types. The results demonstrate superior performance of seq2seq over ARIMA, for models generated throughout most of bitcoin price history, with additional data sources leading to better performance during less volatile price periods.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM), 2018. artikel-id 4
Nyckelord [en]
Neural Networks, Machine Learning, ARIMA, Cryptocurrency
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-161409DOI: 10.475/123_4OAI: oai:DiVA.org:su-161409DiVA, id: diva2:1258222
Konferens
SIGKDD Fintech’18, London, UK, August, 2018
Tillgänglig från: 2018-10-24 Skapad: 2018-10-24 Senast uppdaterad: 2018-11-09

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Rebane, Jonathan ToomasKarlsson, IsakPapapetrou, Panagiotis
Av organisationen
Institutionen för data- och systemvetenskap
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 82 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf