Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explainable time series tweaking via irreversible and reversible temporal transformations
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
Stockholm University, Faculty of Social Sciences, Department of Computer and Systems Sciences.
2018 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Time series classification has received great attention over the past decade with a wide range of methods focusing on predictive performance by exploiting various types of temporal features. Nonetheless, little emphasis has been placed on interpretability and explainability. In this paper, we formulate the novel problem of explainable time series tweaking, where, given a time series and an opaque classifier that provides a particular classification decision for the time series, we want to find the minimum number of changes to be performed to the given time series so that the classifier changes its decision to another class. We show that the problem is NP-hard, and focus on two instantiations of the problem, which we refer to as reversible and irreversible time series tweaking. The classifier under investigation is the random shapelet forest classifier. Moreover, we propose two algorithmic solutions for the two problems along with simple optimizations, as well as a baseline solution using the nearest neighbor classifier. An extensive experimental evaluation on a variety of real datasets demonstrates the usefulness and effectiveness of our problem formulation and solutions.

Place, publisher, year, edition, pages
IEEE Computer Society, 2018.
National Category
Computer Sciences
Research subject
Computer and Systems Sciences
Identifiers
URN: urn:nbn:se:su:diva-161396OAI: oai:DiVA.org:su-161396DiVA, id: diva2:1258209
Conference
IEEE International Conference on Data Mining, Singapore, November 17-20, 2018
Available from: 2018-10-24 Created: 2018-10-24 Last updated: 2019-04-16

Open Access in DiVA

No full text in DiVA

Other links

arXiv:1809.05183

Search in DiVA

By author/editor
Karlsson, IsakRebane, JonathanPapapetrou, Panagiotis
By organisation
Department of Computer and Systems Sciences
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 37 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf