Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Unusual binding-site-specific photophysical properties of a benzothiazole-based optical probe in amyloid beta fibrils
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.ORCID iD: 0000-0003-0185-5724
Wroclaw Univ Sci & Technol, Fac Chem, Dept Phys & Quantum Chem, Wyb Wyspianskiego 27, PL-50370 Wroclaw, Poland..
KTH, School of Biotechnology (BIO), Centres, Albanova VinnExcellence Center for Protein Technology, ProNova.ORCID iD: 0000-0002-1763-9383
2018 (English)In: Physical Chemistry, Chemical Physics - PCCP, ISSN 1463-9076, E-ISSN 1463-9084, Vol. 20, no 31, p. 20334-20339Article in journal (Refereed) Published
Abstract [en]

Optical imaging of amyloid fibrils serves as a cost-effective route for the diagnosis of Alzheimer-like conformational diseases. However, the challenge here is to optimize the binding affinity and photophysical properties of the optical imaging agents in a way specific to certain types of amyloids. In a few occasions it is shown that novel optical imaging agents can be designed to bind to a particular type of amyloid fibril with larger binding affinity and specificity. There is also a recent report on photoluminescent polythiophenes which display photophysical properties that can be used to distinguish the variants or subtypes of amyloids (J. Rasmussen et al., Proc. Natl. Acad. Sci. U. S. A., 2017, 114(49), 13018-13023). Based on a multiscale modeling approach, here, we report on the complementary aspect that the photophysical properties of a benzothiazole based optical probe (referred to as BTA-3) can be specific to the binding sites in the same amyloid fibrils and we attribute this to its varying electronic structure in different sites. As reported experimentally from competitive binding assay studies for many amyloid staining molecules and tracers, we also show multiple binding sites in amyloid fibrils for this probe. In particular, BTA-3 displayed a red-shift in its low-frequency absorption band only in site-4, a surface site of amyloid fibrils when compared to the spectra in water solvent. In the remaining sites, it exhibited a less significant blue shift for the same absorption band.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2018. Vol. 20, no 31, p. 20334-20339
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-234603DOI: 10.1039/c8cp03274bISI: 000442270800002PubMedID: 30043007Scopus ID: 2-s2.0-85051538493OAI: oai:DiVA.org:kth-234603DiVA, id: diva2:1248280
Funder
Swedish Foundation for Strategic Research
Note

QC 20180914

Available from: 2018-09-14 Created: 2018-09-14 Last updated: 2018-09-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Natarajan Arul, MuruganÅgren, Hans
By organisation
Theoretical Chemistry and BiologyAlbanova VinnExcellence Center for Protein Technology, ProNova
In the same journal
Physical Chemistry, Chemical Physics - PCCP
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 89 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf