Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Synergy Conformal Prediction
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. (Farmbio)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Farmaceutiska fakulteten, Institutionen för farmaceutisk biovetenskap. Uppsala universitet, Science for Life Laboratory, SciLifeLab.ORCID-id: 0000-0002-8083-2864
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

Conformal Prediction is a machine learning methodology that produces valid prediction regions under mild conditions. Ensembles of conformal predictors have been proposed to improve the informational efficiency of inductive conformal predictors by combining p-values, however, the validity of such methods has been an open problem. We introduce Synergy Conformal Prediction which is an ensemble method that combines monotonic conformity scores, and is capable of producing valid prediction intervals. We study the applicability in two scenarios; where data is partitioned in order to reduce the total model training time, and where an ensemble of different machine learning methods is used to improve the overall efficiency of predictions. We evaluate the method on 10 data sets and show that the synergy conformal predictor produces valid predictions and improves informational efficiency as compared to inductive conformal prediction and existing ensemble methods. The results indicate that synergy conformal prediction has advantageous properties compared to contemporary approaches, and we also envision that it will have an impact in Big Data and federated environments.

Emneord [en]
Conformal Prediction, Machine Learning, Synergy Conformal Prediction, Big Data, Federated Learning, Conformal Predictor Ensembles
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-360504OAI: oai:DiVA.org:uu-360504DiVA, id: diva2:1248070
Tilgjengelig fra: 2018-09-13 Laget: 2018-09-13 Sist oppdatert: 2018-09-14bibliografisk kontrollert

Open Access i DiVA

fulltext(292 kB)107 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 292 kBChecksum SHA-512
85a47a66fada12871bdfc3ba579d992a15ce209378b588e964bf02a5f7caaa53f0f93856f52c5eaabe327a360d03547a231632ba32aaa5b928fcff1a81bd3b46
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Gauraha, NiharikaSpjuth, Ola
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 107 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 820 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf