Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metabolic engineering of Synechocystis PCC 6803 for photosynthetic 1-butanol production
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.ORCID iD: 0000-0002-6413-1443
Uppsala University, Disciplinary Domain of Science and Technology, Chemistry, Department of Chemistry - Ångström, Molecular Biomimetics.
(English)Manuscript (preprint) (Other academic)
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-359891OAI: oai:DiVA.org:uu-359891DiVA, id: diva2:1246012
Available from: 2018-09-06 Created: 2018-09-06 Last updated: 2018-09-17
In thesis
1. Metabolic Engineering of Synechocystis PCC 6803 for Butanol Production
Open this publication in new window or tab >>Metabolic Engineering of Synechocystis PCC 6803 for Butanol Production
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

There is an urgent demand for renewable alternatives to fossil fuels since the extraction and utilization cause a series of environmental problems in the world. Thus, the utilization of solar energy has attracted much attention in the last decades since there is excess amount of light on Earth. Photosynthetic microorganisms, such as cyanobacteria, can be a good biological chassis to convert solar energy directly to chemical energy. It has been demonstrated that cyanobacteria can produce various compounds which can be used asfourth-generation biofuels. This thesis focuses on the photo-autotrophic production of two biofuel compounds, isobutanol and 1-butanol, in the unicellular cyanobacterial strain Synechocystis PCC 6803. In the studies of isobutanol production, the endogenous alcohol dehydrogenase of Synechocystis encoded by slr1192 showed impressive activity in isobutanol formation. In addition, a-ketoisovalerate decarboxylase (Kivd) was identified as the only heterologous enzyme needed to be introduced for isobutanol production in Synechocystis. Kivd was further recognized as a bottleneck in the isobutanol production pathway. Therefore, Kivd was engineered via rational design to shift the preferential activity towards the production of isobutanol instead of the by-product 3-methyl-1-butanol. The best strain pEEK2-ST expressing KivdS286T showed dramatically increased productivity, and the activity of Kivd was successfully shifted further towards isobutanol production. A cumulative isobutanol titer of 911 mg L-1 was observed from this strain after 46 days growth under 50 μmol photons m−2 s−1 with pH adjusted to between 7 and 8. A maximum production rate of nearly 44 mg L-1d-1was reached between days 4 and 6. Similar metabolic engineering strategies were employed to generate 1-butanol producing Synechocystis strains and then to stepwise enhance the production. By selecting the best enzymes and promotors, 836 mg L-1 in-flask 1-butanol was produced. By optimizing the cultivation condition, an in-flask titer of 2.1 g L-1 and a maximal cumulative titer of 4.7 g L-1 were observed in the long-term cultivation. This thesis demonstrates different metabolic engineering strategies for producing valuable compounds in Synechocystis, exemplified with butanol, and how to enhance production systematically. 

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 65
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1721
Keywords
Synechocystis PCC 6803, biofuel, isobutanol, 1-butanol, metabolic engineering, protein engineering
National Category
Biochemistry and Molecular Biology
Research subject
Biochemistry
Identifiers
urn:nbn:se:uu:diva-360031 (URN)978-91-513-0441-0 (ISBN)
Public defence
2018-10-26, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:15 (English)
Opponent
Supervisors
Available from: 2018-10-05 Created: 2018-09-09 Last updated: 2018-10-16

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Liu, XufengMiao, RuiLindberg, PiaLindblad, Peter
By organisation
Molecular Biomimetics
Biochemistry and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 1647 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf