Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adapting TCP Small Queues for IEEE 802.11 Networks
University of Modena and Reggio Emilia.
Centre Tecnológic de Telecomunicacions de Catalunya.
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Mathematics and Computer Science (from 2013). (DISCO)ORCID iD: 0000-0001-5241-6815
University of Modena and Reggio Emilia.
Show others and affiliations
2018 (English)Conference paper, Published paper (Refereed)
Abstract [en]

In recent years, the Linux kernel has adopted an algorithm calledTCP Small Queues (TSQ) for reducing queueing latency by controlling buffering in the networking stack.This solution consists of a back-pressure mechanism that limitsthe number of TCP segments within the sender TCP/IP stack, waitingfor packets to actually be transmitted onto the wire beforeenqueueing further segments.Unfortunately, TSQ prevents the frameaggregation mechanism in the IEEE 802.11n/ac standards from achieving itsmaximum aggregation, because not enough packets are available in the queue to buildaggregates from, which severely limits achievable throughput over wirelesslinks.This paper demonstrates this limitation of TSQ in wireless networks and proposesControlled TSQ (CoTSQ), a solution that improves TSQ so that it controls the amountof data buffered while allowing the IEEE 802.11n/ac aggregation logic to fullyexploit the available channel and achieve high throughput. Results on a real testbed show that CoTSQ leadsto a doubling of throughput on 802.11n and up to an order of magnitudeimprovement in 802.11ac networks, with a negligible latency increase.

Place, publisher, year, edition, pages
2018.
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kau:diva-68631OAI: oai:DiVA.org:kau-68631DiVA, id: diva2:1235982
Conference
IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)
Available from: 2018-07-30 Created: 2018-07-30 Last updated: 2018-09-27
In thesis
1. Bufferbloat and Beyond: Removing Performance Barriers in Real-World Networks
Open this publication in new window or tab >>Bufferbloat and Beyond: Removing Performance Barriers in Real-World Networks
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The topic of this thesis is the performance of computer networks. While network performance has generally improved with time, over the last several years we have seen examples of performance barriers limiting network performance. In this work we explore such performance barriers and look for solutions.

The problem of excess persistent queueing latency, known as bufferbloat, serves as our starting point; we examine its prevalence in the public internet, and evaluate solutions for better queue management, and explore how to improve on existing solutions to make them easier to deploy.

Since an increasing number of clients access the internet through WiFi networks, examining WiFi performance is a natural next step. Here we also look at bufferbloat, as well as the so-called performance anomaly, where stations with poor signal strengths can severely impact the performance of the whole network. We present solutions for both of these issues, and additionally design a mechanism for assigning policies for distributing airtime between devices on a WiFi network. We also analyse the “TCP Small Queues” latency minimisation technique implemented in the Linux TCP stack and optimise its performance over WiFi networks.

Finally, we explore how high-speed network processing can be enabled in software, by looking at the eXpress Data Path framework that has been gradually implemented in the Linux kernel as a way to enable high-performance programmable packet processing directly in the operating system’s networking stack.

A special focus of this work has been to ensure that the results are carried forward to the implementation stage, which is achieved by releasing implementations as open source software. This includes parts that have been accepted into the Linux kernel, as well as a separate open source measurement tool, called Flent, which is used to perform most of the experiments presented in this thesis, and also used widely in the bufferbloat community.

Abstract [en]

The topic of this thesis is the performance of computer networks in general, and the internet in particular. While network performance has generally improved with time, over the last several years we have seen examples of performance barriers limiting network performance. In this work we explore such performance barriers and look for solutions.

Our exploration takes us through three areas where performance barriers are found: The bufferbloat phenomenon of excessive queueing latency, the performance anomaly in WiFi networks and related airtime resource sharing problems, and the problem of implementing high-speed programmable packet processing in an operating system. In each of these areas we present solutions that significantly advance the state of the art.

The work in this thesis spans all three aspects of the field of computing, namely mathematics, engineering and science. We perform mathematical analysis of algorithms, engineer solutions to the problems we explore, and perform scientific studies of the network itself. All our solutions are implemented as open source software, including both contributions to the upstream Linux kernel, as well as the Flent test tool, developed to support the measurements performed in the rest of the thesis.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2018
Series
Karlstad University Studies, ISSN 1403-8099 ; 2018:42
Keywords
Bufferbloat, AQM, WiFi, XDP, TSQ, Flent, network measurement, performance evaluation, fairness, queueing, programmable packet processing
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kau:diva-69416 (URN)978-91-7063-878-7 (ISBN)978-91-7063-973-9 (ISBN)
Public defence
2018-11-23, 21A342, Eva Erikssonsalen, Karlstad, 09:15 (English)
Opponent
Supervisors
Available from: 2018-10-26 Created: 2018-09-27 Last updated: 2018-11-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Høiland-Jørgensen, Toke
By organisation
Department of Mathematics and Computer Science (from 2013)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 2279 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf