Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Line bundles defined by the Schwarz function
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0002-3125-3030
UCSB, Dept Math, Santa Barbara, CA 93106 USA.;Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England..
2018 (English)In: Analysis and Mathematical Physics, ISSN 1664-2368, E-ISSN 1664-235X, Vol. 8, no 2, p. 171-183Article in journal (Refereed) Published
Abstract [en]

Cauchy and exponential transforms are characterized, and constructed, as canonical holomorphic sections of certain line bundles on the Riemann sphere defined in terms of the Schwarz function. A well known natural connection between Schwarz reflection and line bundles defined on the Schottky double of a planar domain is briefly discussed in the same context.

Place, publisher, year, edition, pages
SPRINGER BASEL AG , 2018. Vol. 8, no 2, p. 171-183
Keywords [en]
Line bundle, Schwarz function, Cauchy transform, Exponential transform, Schottky double
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-232268DOI: 10.1007/s13324-017-0201-9ISI: 000436304600002Scopus ID: 2-s2.0-85065046425OAI: oai:DiVA.org:kth-232268DiVA, id: diva2:1233793
Note

QC 20180719

Available from: 2018-07-19 Created: 2018-07-19 Last updated: 2020-03-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Gustafsson, Björn
By organisation
Mathematics (Div.)
In the same journal
Analysis and Mathematical Physics
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf