Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Study and Analysis of Convolutional Neural Networks for Pedestrian Detection in Autonomous Vehicles
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Institutionen för informationsteknologi, Avdelningen för visuell information och interaktion.
2018 (engelsk)Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
Abstract [en]

The automotive industry is heading towards more automation. This puts high demands on many systems like Pedestrian Detection Systems. Such systems need to operate in real time with high accuracy and in embedded systems with limited power, memory resources and compute power. This in turn puts high demands on model size and model design. Lately Convolutional Neural Networks (ConvNets) have dominated the field of object detection and therefore it is reasonable to believe that they are suited for pedestrian detection as well. Therefore, this thesis investigates how ConvNets have been used for pedestrian detection and how such solutions can be implemented in embedded systems on FPGAs (Field Programmable Gate Arrays). The conclusions drawn are that ConvNets indeed perform well on pedestrian detection in terms of accuracy but to a cost of large model sizes and heavy computations. This thesis also comes up with a design proposal of a ConvNet for pedestrian detection with the implementation in an embedded system in mind. The proposed network performs well on pedestrian classification and the performance looks promising for detection as well, but further development is required.

sted, utgiver, år, opplag, sider
2018. , s. 65
Serie
UPTEC F, ISSN 1401-5757 ; 18020
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-353608OAI: oai:DiVA.org:uu-353608DiVA, id: diva2:1218225
Eksternt samarbeid
Alten Sverige AB
Utdanningsprogram
Master Programme in Engineering Physics
Veileder
Examiner
Tilgjengelig fra: 2018-06-26 Laget: 2018-06-14 Sist oppdatert: 2018-07-04bibliografisk kontrollert

Open Access i DiVA

fulltext(2738 kB)126 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2738 kBChecksum SHA-512
292fef4f154053c3dc89eeec7befb9499137c272428341020405fa55869544572ea85183d0dc2a3196c4ba7852f2e4fcc9437a70407219122c020e511db7e03b
Type fulltextMimetype application/pdf

Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 126 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

urn-nbn

Altmetric

urn-nbn
Totalt: 525 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf