Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
3D localization in digital holography from scattered light from micrometer-sized particles
Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, Strömningslära och experimentell mekanik.ORCID-id: 0000-0003-0398-1919
2018 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

When a particle is illuminated by a beam of light it will scatter and redistribute the light in all directions. How it scatters depends on the size, shape and refractive index of the particle. Additionally, it depends on the wavelength and polarization of the illuminating beam. The direction and distance to the observer relative the particle also needs to be considered.  A digital holographic imaging system is used to collect parts of the scattered light from micrometer-sized particles. By utilizing digital holography a three-dimensional reconstruction of the imaged scene is possible. Traditionally, particles are localized based on the intensity in the holographic reconstructions. In this licentiate thesis, the phase response of the scattered light is investigated and utilized. An alternative method for locating spherical particles is presented. The method locate particles based on a simple feature of a propagating wave, namely the fact that the wavefront curvature changes from converging to diverging at the axial location of the particle. The wavefront curvature is estimated using two different methods. The first method estimates the lateral phase-gradients using a finite-difference method. The second method uses a three-dimensional parametric model based on a Chebyshev polynomial expansion. The methods are demonstrated using both simulations and experimental measurements. The simulations are based on the Lorenz-Mie scattering theory for spherical particles and are combined with an imaging system model. Experiments are performed using an off-axis polarization sensitive digital holographic system with a coherent Nd:YAG laser. Measurements of stationary particles are made to validate and evaluate the proposed method. It is found that these methods estimate the true axial position and does not have the offset that is associated with intensity-based methods. Additionally, it is possible to exclude noise that shows up as false particles since noise does not have the same phase response as a real particle. The second method, that uses a parametric model, also improves the standard deviation in the positioning.

sted, utgiver, år, opplag, sider
Luleå: Luleå University of Technology, 2018.
Serie
Licentiate thesis / Luleå University of Technology, ISSN 1402-1757
Emneord [en]
Digital Holography, Polarization, Particle Scattering, Metrology
HSV kategori
Forskningsprogram
Experimentell mekanik
Identifikatorer
URN: urn:nbn:se:ltu:diva-68374ISBN: 978-91-7790-114-3 (tryckt)ISBN: 978-91-7790-115-0 (digital)OAI: oai:DiVA.org:ltu-68374DiVA, id: diva2:1198138
Presentation
2018-06-14, E243, Luleå Tekniska Universitet, Luleå, 09:00 (svensk)
Opponent
Veileder
Forskningsfinansiär
Swedish Research Council, 621-2014-4906Tilgjengelig fra: 2018-04-17 Laget: 2018-04-16 Sist oppdatert: 2018-06-12bibliografisk kontrollert
Delarbeid
1. Improved particle position accuracy from off-axis holograms using a Chebyshev model
Åpne denne publikasjonen i ny fane eller vindu >>Improved particle position accuracy from off-axis holograms using a Chebyshev model
2018 (engelsk)Inngår i: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 57, nr 1, s. A157-A163Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Side scattered light from micrometer-sized particles is recorded using an off-axis digital holographic setup. From holograms, a volume is reconstructed with information about both intensity and phase. Finding particle positions is non-trivial, since poor axial resolution elongates particles in the reconstruction. To overcome this problem, the reconstructed wavefront around a particle is used to find the axial position. The method is based on the change in the sign of the curvature around the true particle position plane. The wavefront curvature is directly linked to the phase response in the reconstruction. In this paper we propose a new method of estimating the curvature based on a parametric model. The model is based on Chebyshev polynomials and is fit to the phase anomaly and compared to a plane wave in the reconstructed volume. From the model coefficients, it is possible to find particle locations. Simulated results show increased performance in the presence of noise, compared to the use of finite difference methods. The standard deviation is decreased from 3–39 μm to 6–10 μm for varying noise levels. Experimental results show a corresponding improvement where the standard deviation is decreased from 18 μm to 13 μm.

sted, utgiver, år, opplag, sider
Optical Society of America, 2018
Emneord
Digital holography, Scattering, particles, Mie theory, Image processing
HSV kategori
Forskningsprogram
Experimentell mekanik
Identifikatorer
urn:nbn:se:ltu:diva-66958 (URN)10.1364/AO.57.00A157 (DOI)000418614400020 ()2-s2.0-85039793350 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 621-2014-4906
Merknad

Validerad;2018;Nivå 2;2017-12-15 (andbra)

Tilgjengelig fra: 2017-12-11 Laget: 2017-12-11 Sist oppdatert: 2018-04-16bibliografisk kontrollert
2. Off-axis digital holographic particle positioning based on polarization-sensitive wavefront curvature estimation
Åpne denne publikasjonen i ny fane eller vindu >>Off-axis digital holographic particle positioning based on polarization-sensitive wavefront curvature estimation
2016 (engelsk)Inngår i: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 55, nr 27, s. 7503-7510Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Poor axial resolution in holographic particle imaging applications makes particle positioning in 3D space morecomplex since the positions are not directly obtained. In this paper we estimate the axial position of micrometerparticles by finding the location where the wavefront curvature from the scattered light becomes zero. By record-ing scattered light at 90°using off-axis holography, the complex amplitude of the light is obtained. Byreconstruction of the imaged scene, a complex valued volume is produced. From this volume, phase gradientsare calculated for each particle and used to estimate the wavefront curvature. From simulations it is found that thewavefront curvature became zero at the true axial position of the particle. We applied this metric to track an axialtranslation experimentally using a telecentric off-axis holographic imaging system with a lateral magnification ofM1.33. A silicon cube with molded particles inside was used as sample. Holographic recordings are performedboth before and after a 100μm axial translation. From the estimated positions, it was found that the mean dis-placement of particles between recordings was 105.0μm with a standard deviation of 25.3μm.

sted, utgiver, år, opplag, sider
Optical Society of America, 2016
Emneord
Digital holography, Scattering, Particles
HSV kategori
Forskningsprogram
Experimentell mekanik
Identifikatorer
urn:nbn:se:ltu:diva-59662 (URN)10.1364/AO.55.007503 (DOI)000383996900008 ()2-s2.0-84988878500 (Scopus ID)
Forskningsfinansiär
Swedish Research Council, 621-2014-4906
Merknad

Validerad; 2016; Nivå 2; 2016-10-25 (andbra)

Tilgjengelig fra: 2016-10-11 Laget: 2016-10-11 Sist oppdatert: 2018-07-10bibliografisk kontrollert
3. Axial Particle Positioning by Wavefront Parameterization using Chebyshev Polynomials and Off-axis Digital Holography
Åpne denne publikasjonen i ny fane eller vindu >>Axial Particle Positioning by Wavefront Parameterization using Chebyshev Polynomials and Off-axis Digital Holography
2017 (engelsk)Inngår i: Digital Holography and Three-Dimensional Imaging, Washington: The Optical Society , 2017, artikkel-id M4A.3Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

A particle can be axially positioned where its scattered light has a plane wavefront. The phase anomaly compared to a plane wave is fitted to 3D Chebyshev polynomial, where coefficients correspond to the axial position.

sted, utgiver, år, opplag, sider
Washington: The Optical Society, 2017
Serie
Digital Holography and Three-Dimensional Imaging
Emneord
Particle Scattering, Digital Holography
HSV kategori
Forskningsprogram
Experimentell mekanik
Identifikatorer
urn:nbn:se:ltu:diva-64069 (URN)10.1364/DH.2017.M4A.3 (DOI)2-s2.0-85026326255 (Scopus ID)978-1-943580-28-6 (ISBN)
Konferanse
Digital Holography and Three-Dimensional Imaging 2017, JeJu Island, South Korea, 29 May–1 June 2017
Forskningsfinansiär
Swedish Research Council, 621-2014-4906
Tilgjengelig fra: 2017-06-15 Laget: 2017-06-15 Sist oppdatert: 2018-04-16bibliografisk kontrollert

Open Access i DiVA

fulltext(3837 kB)53 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 3837 kBChecksum SHA-512
b1682e1000cd9a82d302e5ee5057b94b52172ee5684a0f59ebcad8e9ea11fc10cd83eaabe94fa2a7bb82108caa5077b02fe74f0d35220968d646dcc8eb729962
Type fulltextMimetype application/pdf

Søk i DiVA

Av forfatter/redaktør
Öhman, Johan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 53 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 2907 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf