Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Learning to detect misaligned point clouds
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-5007-548X
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0001-8658-2985
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0002-9503-0602
Örebro universitet, Institutionen för naturvetenskap och teknik. (AASS MRO Lab)ORCID-id: 0000-0003-0217-9326
2018 (engelsk)Inngår i: Journal of Field Robotics, ISSN 1556-4959, E-ISSN 1556-4967, Vol. 35, nr 5, s. 662-677Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Matching and merging overlapping point clouds is a common procedure in many applications, including mobile robotics, three-dimensional mapping, and object visualization. However, fully automatic point-cloud matching, without manual verification, is still not possible because no matching algorithms exist today that can provide any certain methods for detecting misaligned point clouds. In this article, we make a comparative evaluation of geometric consistency methods for classifying aligned and nonaligned point-cloud pairs. We also propose a method that combines the results of the evaluated methods to further improve the classification of the point clouds. We compare a range of methods on two data sets from different environments related to mobile robotics and mapping. The results show that methods based on a Normal Distributions Transform representation of the point clouds perform best under the circumstances presented herein.

sted, utgiver, år, opplag, sider
John Wiley & Sons, 2018. Vol. 35, nr 5, s. 662-677
Emneord [en]
perception, mapping, position estimation
HSV kategori
Forskningsprogram
Datavetenskap
Identifikatorer
URN: urn:nbn:se:oru:diva-62985DOI: 10.1002/rob.21768ISI: 000437836900002Scopus ID: 2-s2.0-85037622789OAI: oai:DiVA.org:oru-62985DiVA, id: diva2:1163065
Prosjekter
ILIADALLO
Forskningsfinansiär
EU, Horizon 2020, 732737Knowledge Foundation, 20110214Tilgjengelig fra: 2017-12-05 Laget: 2017-12-05 Sist oppdatert: 2018-07-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Søk i DiVA

Av forfatter/redaktør
Almqvist, HåkanMagnusson, MartinKucner, Tomasz PiotrLilienthal, Achim
Av organisasjonen
I samme tidsskrift
Journal of Field Robotics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 432 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf