Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Time Domain Characterization of High Power Solid State Amplifiers for the Next Generation Linear Accelerators
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Tekniska sektionen, Institutionen för teknikvetenskaper, Fasta tillståndets elektronik.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA.
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, FREIA. Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Fysiska sektionen, Institutionen för fysik och astronomi, Högenergifysik.
Visa övriga samt affilieringar
2018 (Engelska)Ingår i: Microwave and optical technology letters (Print), ISSN 0895-2477, E-ISSN 1098-2760, Vol. 60, nr 1, s. 163-171Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

This paper presents the time domain characterization of high power pulsed solid state amplifiers to be used forlinear accelerator applications. The study comprises nonlinear circuit envelope simulations and time domainenvelope measurements. Measurements and simulations are performed under the pulsed conditions (3.5 mspulse width, 5% duty cycle) specific to the European Spallation Source (ESS) high intensity proton accelerator.We measure the characteristics of pulsed LDMOS based power amplifiers such as: pulse droop along the pulse,efficiency, average envelope pulse amplitude and phase, pulse drain current waveform, pulse drain voltagewaveform, etc. A comparison between the measured results and the simulated results is also presented. Inaddition to the pulse profile characterization, the pulse to pulse (P2P) stability of the presented solid state poweramplifier (SSPA) is investigated as variations of amplitude and phase. The P2P stability simulations areintroduced as a combination of the Monte-Carlo simulations and the nonlinear circuit envelope simulations. Thesimulated results are used for fitting the P2P measurements to give an early insight of causes of instabilities ofthe nonlinear LDMOS models.

Ort, förlag, år, upplaga, sidor
2018. Vol. 60, nr 1, s. 163-171
Nyckelord [en]
accelerator, solid state amplifiers, LDMOS, nonlinear circuit envelope, time domain envelope measurements, pulse profile
Nationell ämneskategori
Annan elektroteknik och elektronik
Identifikatorer
URN: urn:nbn:se:uu:diva-334910DOI: 10.1002/mop.30926ISI: 000416937700028OAI: oai:DiVA.org:uu-334910DiVA, id: diva2:1161125
Projekt
ESSTillgänglig från: 2017-11-29 Skapad: 2017-11-29 Senast uppdaterad: 2018-02-28Bibliografiskt granskad
Ingår i avhandling
1. From Macroscopic to Microscopic Dynamics of Superconducting Cavities
Öppna denna publikation i ny flik eller fönster >>From Macroscopic to Microscopic Dynamics of Superconducting Cavities
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Superconducting (SC) radio frequency (RF) cavities are at the heart of many large-scale particle accelerators such as the European Spallation Source (ESS), the X-ray Free Electron Laser (XFEL), the Linac Coherent Light Source (LCLS)-II and the proposed International Linear Collider (ILC). The SC cavities are essentially resonant structures with very high intrinsic quality factors (Q0) of the order of 1010. The high Q0 of the cavities leads to increased reflection during charging of the cavities to nominal voltage because the bandwidth of the signal exceeding that of the cavity. This results in high energy losses in case of pulsed machines. In this thesis I explore and present a novel technique to optimally charge the superconducting cavities with the particular example of the spoke cavities to be used for the ESS project in Lund, Sweden. The analysis reveals that slow charging with hyperbolic sine cavity voltage profile matches the signal bandwidth to that of the cavity which leads to energy efficient filling.

However, a filling rate lower than some particular value is counter-productive. The energy expended in cryogenic cooling to evacuate the heat due to ohmic losses in the cavity starts to dominate the lost energy. Such cryogenic losses are dependent on cavity Q0 through the residual resistance. The residual resistance changes with the applied electromagnetic field due to the pair-breaking mechanism of Cooper-pairs. Hence, methods for accurate measurement of the cavity Q0 are essential for accurate characterization and operation of the superconducting cavities. In this thesis I propose a novel method to accurately measure Q0 as a function of the applied electromagnetic field and present experimental results from the prototype spoke cavity in the Facility for Research Instrumentation and Accelerator Development (FREIA), at Uppsala University.

The cavity quality factor (Q0) is also dependent on the material’s purity and the trapped magnetic flux in the superconducting material. Recent studies have revealed that the rate of cooling of materials through the critical temperature has an effect on the residual flux trapped in the material. In this thesis I use the time-dependent Ginzburg-Landau equations to model the process of state transition from a normal to a superconducting state. This theoretical study may allow an explanation of the experimentally observed results from the basic principles of the general theory of state transitions as proposed by Ginzburg and Landau.

Ort, förlag, år, upplaga, sidor
Uppsala: Acta Universitatis Upsaliensis, 2018. s. 75
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1638
Nyckelord
superconducting cavity, superconductivity, self-excited loop, Ginzburg-landau, vortex, optimization, quality factor, microwave
Nationell ämneskategori
Acceleratorfysik och instrumentering
Forskningsämne
Fysik med inriktning mot elementarpartikelfysik
Identifikatorer
urn:nbn:se:uu:diva-343704 (URN)978-91-513-0253-9 (ISBN)
Disputation
2018-04-20, Polhemsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 09:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-03-27 Skapad: 2018-02-28 Senast uppdaterad: 2018-04-24

Open Access i DiVA

fulltext(1209 kB)34 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1209 kBChecksumma SHA-512
f413e8d4648c2aba67cf3cb627cc65c0f5fa747cf8430194304252acfbce9e7efcd5cddd3cf5eab3c10278dd4ca7b0171a9f696de9aed9c56b35d61946648184
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Hoang Duc, LongBhattacharyya, AnirbanGoryashko, VitaliyRuber, RogerOlsson, JörgenDancila, Dragos
Av organisationen
FREIAFasta tillståndets elektronikHögenergifysik
I samma tidskrift
Microwave and optical technology letters (Print)
Annan elektroteknik och elektronik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 34 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 196 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf