Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Mining disproportional itemsets for characterizing groups of heart failure patients from administrative health records
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments, Association for Computing Machinery (ACM), 2017, s. 394-398Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Heart failure is a serious medical conditions involving decreased quality of life and an increased risk of premature death. A recent evaluation by the Swedish National Board of Health and Welfare shows that Swedish heart failure patients are often undertreated and do not receive basic medication as recommended by the national guidelines for treatment of heart failure. The objective of this paper is to use registry data to characterize groups of heart failure patients, with an emphasis on basic treatment. Towards this end, we explore the applicability of frequent itemset mining and disproportionality analysis for finding interesting and distinctive characterizations of a target group of patients, e.g., those who have received basic treatment, against a control group, e.g., those who have not received basic treatment. Our empirical evaluation is performed on data extracted from administrative health records from the Stockholm County covering the years 2010--2016. Our findings suggest that frequency is not always the most appropriate measure of importance for frequent itemsets, while itemset disproportionality against a control group provides alternative rankings of the extracted itemsets leading to some medically intuitive characterizations of the target groups.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM), 2017. s. 394-398
Emneord [en]
frequent itemsets, disproportionality analysis, heart failure
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-149270DOI: 10.1145/3056540.3076177ISBN: 978-1-4503-5227-7 (digital)OAI: oai:DiVA.org:su-149270DiVA, id: diva2:1159986
Konferanse
10th International Conference on PErvasive Technologies Related to Assistive Environments, Island of Rhodes, Greece, June 21 - 23, 2017
Tilgjengelig fra: 2017-11-24 Laget: 2017-11-24 Sist oppdatert: 2018-01-13bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekst

Søk i DiVA

Av forfatter/redaktør
Karlsson, IsakPapapetrou, PanagiotisAsker, LarsBoström, Henrik
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 7 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf