Digitala Vetenskapliga Arkivet

Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Visualization of painful inflammation in patients with pain after traumatic ankle sprain using [(11)C]-D-deprenyl PET/CT.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Radiology.
Uppsala University, Disciplinary Domain of Humanities and Social Sciences, Faculty of Social Sciences, Department of Psychology. Karolinska Inst, Dept Neurosci, Stockholm, Sweden.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Surgical Sciences, Anaesthesiology and Intensive Care.
Show others and affiliations
2017 (English)In: Scandinavian Journal of Pain, ISSN 1877-8860, E-ISSN 1877-8879, Vol. 17, no 1, p. 418-424Article in journal (Refereed) Published
Abstract [en]

BACKGROUND AND AIMS: Positron emission tomography (PET) with the radioligand [(11)C]-D-deprenyl has shown increased signal at location of pain in patients with rheumatoid arthritis and chronic whiplash injury. The binding site of [(11)C]-D-deprenyl in peripheral tissues is suggested to be mitochondrial monoamine oxidase in cells engaged in post-traumatic inflammation and tissue repair processes. The association between [(11)C]-D-deprenyl uptake and the transition from acute to chronic pain remain unknown. Further imaging studies of musculoskeletal pain at the molecular level would benefit from establishing a clinical model in a common and well-defined injury in otherwise healthy and drug-naïve subjects. The aim of this study was to investigate if [(11)C]-D-deprenyl uptake would be acutely elevated in unilateral ankle sprain and if tracer uptake would be reduced as a function of healing, and correlated with pain localizations and pain experience.

METHODS: Eight otherwise healthy patients with unilateral ankle sprain were recruited at the emergency department. All underwent [(11)C]-D-deprenyl PET/CT in the acute phase, at one month and 6-14 months after injury.

RESULTS: Acute [(11)C]-D-deprenyl uptake at the injury site was a factor of 10.7 (range 2.9-37.3) higher than the intact ankle. During healing, [(11)C]-D-deprenyl uptake decreased, but did not normalize until after 11 months. Patients experiencing persistent pain had prolonged [(11)C]-D-deprenyl uptake in painful locations.

CONCLUSIONS AND IMPLICATIONS: The data provide further support that [(11)C]-D-deprenyl PET can visualize, quantify and follow processes in peripheral tissue that may relate to soft tissue injuries, inflammation and associated nociceptive signaling. Such an objective correlate would represent a progress in pain research, as well as in clinical pain diagnostics and management.

Place, publisher, year, edition, pages
Walter de Gruyter, 2017. Vol. 17, no 1, p. 418-424
Keywords [en]
Ankle injuries, Carbon-11, Deprenyl, Inflammation, PET, Pain
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:uu:diva-333782DOI: 10.1016/j.sjpain.2017.10.008ISI: 000419851500070PubMedID: 29126847OAI: oai:DiVA.org:uu-333782DiVA, id: diva2:1157740
Available from: 2017-11-16 Created: 2017-11-16 Last updated: 2019-09-25Bibliographically approved
In thesis
1. Visualization of Peripheral Pain Generating Processes and Inflammation in Musculoskeletal Tissue using [11C]-D-deprenyl PET
Open this publication in new window or tab >>Visualization of Peripheral Pain Generating Processes and Inflammation in Musculoskeletal Tissue using [11C]-D-deprenyl PET
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

An objective visualization and quantification of pain-generating processes in the periphery would alter pain diagnosis and represent an important paradigm shift in pain research. Positron emission tomography (PET) radioligand [11C]-D-deprenyl has shown an elevated uptake in painful inflammatory arthritis and whiplash-associated disorder. However, D-Deprenyl’s molecular binding target and uptake mechanism in inflammation and musculoskeletal injuries are still unknown. The present thesis aimed to gain insight into the mechanisms of D-deprenyl binding and uptake and to verify whether pain-associated sites and inflammation in acute musculoskeletal injury could be visualized, objectively quantified and followed over time with [11C]-D-deprenyl PET-computed tomography (PET/CT).

To identify the D-deprenyl binding target, a high-throughput analysis and competitive radioligand binding studies were performed. D-deprenyl inhibited monoamine oxidase A (MAO-A) activity by 55%, MAO-B activity by 99% and angiotensin-converting enzyme (ACE) by 70%, which identified these enzymes as higher-affinity targets. Furthermore, radioligand receptor binding assays pointed favorably towards the concept of MAO-B as the primary target. To investigate the biochemical characteristics of the binding site, we used radioligand binding assays to assess differences in the binding profile in inflamed human synovial membranes exhibiting varying levels of inflammation. D-deprenyl bound to a single, saturable population of membrane-bound protein in synovial membrane homogenates and the level of inflammation correlated with an increase in D-deprenyl binding affinity.

To verify whether D-deprenyl can visualize pain-generating processes, patients with musculoskeletal injuries were investigated and followed-up with [11C]-D-deprenyl PET/CT. In the study of eight patients with ankle sprain, the molecular aspects of inflammation and tissue injury could be visualized, objectively quantified and followed over time with [11C]-D-deprenyl PET/CT. The pain coexisted with increased [11C]-D-deprenyl uptake. In the study of 16 whiplash patients, an altered [11C]-D-deprenyl uptake in the cervical bone structures and facet joints was associated with subjective pain levels and self-rated disability.

To further evaluate D-Deprenyl’s usefulness as a marker of inflammation, three PET tracers were compared in an animal PET/CT study. Preliminary findings showed that [11C]-D-deprenyl had an almost identical uptake pattern when compared with [11C]-L-deprenyl. The two deprenyl enantiomers showed no signs of specific binding or trapping and therefore may not be useful to study further in models of inflammatory pain, surgical pain, or both.

This thesis demonstrates that D-deprenyl visualizes painful inflammation in musculoskeletal injuries and that the probable underlying mechanism of [11C]-D-deprenyl uptake is binding to MAO.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2018. p. 72
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1456
Keywords
ankle injuries, arthritis, binding site, binding target, carbon-11, deprenyl, high-throughput screening, inflammation, monoamine oxi-dase, pain, PET, whiplash
National Category
Anesthesiology and Intensive Care Radiology, Nuclear Medicine and Medical Imaging
Research subject
Anaesthesiology and Intensive Care
Identifiers
urn:nbn:se:uu:diva-347685 (URN)978-91-513-0313-0 (ISBN)
Public defence
2018-05-25, Universitetshuset, Biskopsgatan 3, Uppsala, 09:00 (Swedish)
Opponent
Supervisors
Available from: 2018-05-02 Created: 2018-04-06 Last updated: 2018-10-08

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Aarnio, MikkoAppel, LieuweFredriksson, MatsGordh, TorstenWolf, OlofSörensen, JensEriksson, MånsPeterson, Magnus
By organisation
Anaesthesiology and Intensive CareRadiologyDepartment of PsychologyOrthopaedicsDepartment of StatisticsFamily Medicine and Preventive Medicine
In the same journal
Scandinavian Journal of Pain
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 2983 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf