Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Robotic Grasping of Large Objects for Collaborative Manipulation
Luleå tekniska universitet, Institutionen för system- och rymdteknik, Rymdteknik.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

In near future, robots are envisioned to work alongside humans in professional anddomestic environments without significant restructuring of workspace. Roboticsystems in such setups must be adept at observation, analysis and rational de-cision making. To coexist in an environment, humans and robots will need tointeract and cooperate for multiple tasks. A fundamental such task is the manip-ulation of large objects in work environments which requires cooperation betweenmultiple manipulating agents for load sharing. Collaborative manipulation hasbeen studied in the literature with the focus on multi-agent planning and controlstrategies. However, for a collaborative manipulation task, grasp planning alsoplays a pivotal role in cooperation and task completion.In this work, a novel approach is proposed for collaborative grasping and manipu-lation of large unknown objects. The manipulation task was defined as a sequenceof poses and expected external wrench acting on the target object. In a two-agentmanipulation task, the proposed approach selects a grasp for the second agentafter observing the grasp location of the first agent. The solution is computed ina way that it minimizes the grasp wrenches by load sharing between both agents.To verify the proposed methodology, an online system for human-robot manipu-lation of unknown objects was developed. The system utilized depth informationfrom a fixed Kinect sensor for perception and decision making for a human-robotcollaborative lift-up. Experiments with multiple objects substantiated that theproposed method results in an optimal load sharing despite limited informationand partial observability.

Ort, förlag, år, upplaga, sidor
2017. , 69 s.
Nyckelord [en]
Grasp planning, Multi-agent grasping, Collaborative manipulation, Load sharing
Nationell ämneskategori
Robotteknik och automation
Identifikatorer
URN: urn:nbn:se:ltu:diva-65866OAI: oai:DiVA.org:ltu-65866DiVA: diva2:1145271
Ämne / kurs
Examensarbete, minst 30 hp
Utbildningsprogram
Civilingenjör, Rymdteknik
Examinatorer
Tillgänglig från: 2017-09-28 Skapad: 2017-09-28 Senast uppdaterad: 2017-09-28Bibliografiskt granskad

Open Access i DiVA

fulltext(7086 kB)78 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 7086 kBChecksumma SHA-512
be6828bd30f55cddb9a664a6a4ac035c07769f7b24b7acf8cf56f4a7a1afca4841a4eccbd4a93c2c1ba00cd23dd9e340b259413e97348ed34df04472fdec53ac
Typ fulltextMimetyp application/pdf

Av organisationen
Rymdteknik
Robotteknik och automation

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 78 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 31 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf