Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
>k-homogeneous infinite graphs
Uppsala universitet, Teknisk-naturvetenskapliga vetenskapsområdet, Matematisk-datavetenskapliga sektionen, Matematiska institutionen.ORCID-id: 0000-0002-4477-4476
2018 (Engelska)Ingår i: Journal of combinatorial theory. Series B (Print), ISSN 0095-8956, E-ISSN 1096-0902, Vol. 128, s. 160-174Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this article we give an explicit classification for the countably infinite graphs G which are, for some k, ≥k-homogeneous. It turns out that a ≥k  -homogeneous graph M is non-homogeneous if and only if it is either not 1-homogeneous or not 2-homogeneous, both cases which may be classified using ramsey theory.

Ort, förlag, år, upplaga, sidor
2018. Vol. 128, s. 160-174
Nyckelord [en]
>k-homomogeneous, countably infinite graph
Nationell ämneskategori
Algebra och logik
Forskningsämne
Matematisk logik
Identifikatorer
URN: urn:nbn:se:uu:diva-329362DOI: 10.1016/j.jctb.2017.08.007ISI: 000417771100009OAI: oai:DiVA.org:uu-329362DiVA, id: diva2:1144583
Tillgänglig från: 2017-09-26 Skapad: 2017-09-26 Senast uppdaterad: 2018-04-05Bibliografiskt granskad
Ingår i avhandling
1. Limit Laws, Homogenizable Structures and Their Connections
Öppna denna publikation i ny flik eller fönster >>Limit Laws, Homogenizable Structures and Their Connections
2018 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Alternativ titel[sv]
Gränsvärdeslagar, Homogeniserbara Strukturer och Deras Samband
Abstract [en]

This thesis is in the field of mathematical logic and especially model theory. The thesis contain six papers where the common theme is the Rado graph R. Some of the interesting abstract properties of R are that it is simple, homogeneous (and thus countably categorical), has SU-rank 1 and trivial dependence. The Rado graph is possible to generate in a probabilistic way. If we let K be the set of all finite graphs then we obtain R as the structure which satisfy all properties which hold with assymptotic probability 1 in K. On the other hand, since the Rado graph is homogeneous, it is also possible to generate it as a Fraïssé-limit of its age.

Paper I studies the binary structures which are simple, countably categorical, with SU-rank 1 and trivial algebraic closure. The main theorem shows that these structures are all possible to generate using a similar probabilistic method which is used to generate the Rado graph. Paper II looks at the simple homogeneous structures in general and give certain technical results on the subsets of SU-rank 1.

Paper III considers the set K consisting of all colourable structures with a definable pregeometry and shows that there is a 0-1 law and almost surely a unique definable colouring. When generating the Rado graph we almost surely have only rigid structures in K. Paper IV studies what happens if the structures in K are only the non-rigid finite structures. We deduce that the limit structures essentially try to stay as rigid as possible, given the restriction, and that we in general get a limit law but not a 0-1 law.

Paper V looks at the Rado graph's close cousin the random t-partite graph and notices that this structure is not homogeneous but almost homogeneous. Rather we may just add a definable binary predicate, which hold for any two elemenets which are in the same part, in order to make it homogeneous. This property is called being homogenizable and in Paper V we do a general study of homogenizable structures. Paper VI conducts a special case study of the homogenizable graphs which are the closest to being homogeneous, providing an explicit classification of these graphs.

Ort, förlag, år, upplaga, sidor
Uppsala: Department of Mathematics, 2018. s. 43
Serie
Uppsala Dissertations in Mathematics, ISSN 1401-2049 ; 104
Nyckelord
Model theory, random structure, finite model theory, simple theory, homogeneous structure, countably categorical, 0-1 law
Nationell ämneskategori
Algebra och logik
Forskningsämne
Matematisk logik; Matematik
Identifikatorer
urn:nbn:se:uu:diva-330142 (URN)978-91-506-2672-8 (ISBN)
Disputation
2018-02-16, Polhemssalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2018-01-17 Skapad: 2017-11-28 Senast uppdaterad: 2018-02-09

Open Access i DiVA

fulltext(363 kB)3 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 363 kBChecksumma SHA-512
78edecb13e645a24ab47b9f769e33e42690c0ad5c03137515f6a9a576c714e2a4119d5961b3bf4dfe6eb046342ee7dbad44a9ce29e8a6bec96896edd5bf444ec
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextArXiv Pre-print version

Sök vidare i DiVA

Av författaren/redaktören
Ahlman, Ove
Av organisationen
Matematiska institutionen
I samma tidskrift
Journal of combinatorial theory. Series B (Print)
Algebra och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 3 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 547 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf