Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
General Object Detection Using Superpixel Preprocessing
Linköpings universitet, Institutionen för systemteknik, Datorseende.
2017 (Engelska)Självständigt arbete på avancerad nivå (masterexamen), 20 poäng / 30 hpStudentuppsats (Examensarbete)
Abstract [en]

The objective of this master’s thesis work is to evaluate the potential benefit of a superpixel preprocessing step for general object detection in a traffic environment. The various effects of different superpixel parameters on object detection performance, as well as the benefit of including depth information when generating the superpixels are investigated.

In this work, three superpixel algorithms are implemented and compared, including a proposal for an improved version of the popular Spectral Linear Iterative Clustering superpixel algorithm (SLIC). The proposed improved algorithm utilises a coarse-to-fine approach which outperforms the original SLIC for high-resolution images. An object detection algorithm is also implemented and evaluated. The algorithm makes use of depth information obtained by a stereo camera to extract superpixels corresponding to foreground objects in the image. Hierarchical clustering is then applied, with the segments formed by the clustered superpixels indicating potential objects in the input image.

The object detection algorithm managed to detect on average 58% of the objects present in the chosen dataset. It performed especially well for detecting pedestrians or other objects close to the car. Altering the density distribution of the superpixels in the image yielded an increase in detection rate, and could be achieved both with or without utilising depth information. It was also shown that the use of superpixels greatly reduces the amount of computations needed for the algorithm, indicating that a real-time implementation is feasible.

Ort, förlag, år, upplaga, sidor
2017. , s. 85
Nyckelord [en]
superpixels, SLIC, coarse-to-fine, segmentation, general object detection, cityscapes, traffic, image processing, clustering
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-140874ISRN: LiTH-ISY-EX–17/5085–SEOAI: oai:DiVA.org:liu-140874DiVA, id: diva2:1141088
Externt samarbete
Autoliv AB
Ämne / kurs
Examensarbete i Datorseende
Presentation
2017-09-01, Systemet, 10:15 (Svenska)
Handledare
Examinatorer
Tillgänglig från: 2017-09-14 Skapad: 2017-09-13 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

fulltext(33737 kB)365 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 33737 kBChecksumma SHA-512
00e4698dbf1c8055ef20b7d496af571d6196b26fa14a6765b03afd2798053192070597e7246873934235ac5dec2c84547aa651ad278b90ac3848d7873242fdfc
Typ fulltextMimetyp application/pdf

Sök vidare i DiVA

Av författaren/redaktören
Wälivaara, Marcus
Av organisationen
Datorseende
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 365 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 695 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf