Digitala Vetenskapliga Arkivet

Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap. (Regenerative Neurobiology)
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi.ORCID-id: 0000-0001-5602-0850
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi.
Uppsala universitet, Medicinska och farmaceutiska vetenskapsområdet, Medicinska fakulteten, Institutionen för neurovetenskap, Regenerativ neurobiologi.
Vise andre og tillknytning
2017 (engelsk)Inngår i: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, ISSN 1878-7479, Vol. 14, nr 3, s. 773-783Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

ALS is a devastating disease resulting in degeneration of motor neurons (MNs) in the brain and spinal cord. The survival of MNs strongly depends on surrounding glial cells and neurotrophic support from muscles. We previously demonstrated that boundary cap neural crest stem cells (bNCSCs) can give rise to neurons and glial cells in vitro and in vivo and have multiple beneficial effects on co-cultured and co-implanted cells, including neural cells. In this paper, we investigate if bNCSCs may improve survival of MNs harboring a mutant form of human SOD1 (SOD1(G93A)) in vitro under normal conditions and oxidative stress and in vivo after implantation to the spinal cord. We found that survival of SOD1(G93A) MNs in vitro was increased in the presence of bNCSCs under normal conditions as well as under oxidative stress. In addition, when SOD1(G93A) MN precursors were implanted to the spinal cord of adult mice, their survival was increased when they were co-implanted with bNCSCs. These findings show that bNCSCs support survival of SOD1(G93A) MNs in normal conditions and under oxidative stress in vitro and improve their survival in vivo, suggesting that bNCSCs have a potential for the development of novel stem cell-based therapeutic approaches in ALS models.

sted, utgiver, år, opplag, sider
2017. Vol. 14, nr 3, s. 773-783
Emneord [en]
Amyotrophic lateral sclerosis, Neurodegeneration, Neuroglia, Oxidative stress, Transplantation
HSV kategori
Identifikatorer
URN: urn:nbn:se:uu:diva-328588DOI: 10.1007/s13311-016-0505-8ISI: 000405725300022PubMedID: 28070746OAI: oai:DiVA.org:uu-328588DiVA, id: diva2:1136353
Forskningsfinansiär
Swedish Research Council, 20716Stiftelsen Olle Engkvist ByggmästareTilgjengelig fra: 2017-08-28 Laget: 2017-08-28 Sist oppdatert: 2018-09-07bibliografisk kontrollert
Inngår i avhandling
1. Neural progenitors for sensory and motor repair
Åpne denne publikasjonen i ny fane eller vindu >>Neural progenitors for sensory and motor repair
2017 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Injury and neurodegenerative conditions of the spinal cord can lead to paralysis and loss of sensation. Cell therapeutic approaches can restore sensory innervation of the spinal cord following injury and protect spinal cord cells from degeneration. This thesis primarily focuses on the restoration of deaffarented sensory fibres following injury to the dorsal root and spinal cord. These injuries lead to the formation of a non-permissive glial scar that prevents sensory axons from reinnervating spinal cord targets. It takes advantage of a dorsal root injury model that closely mimics spinal root avulsion injuries occurring in humans. In the first part of the thesis, three different neural progenitor types from human or murine sources are tested for their regenerative properties following their transplantation to the site of dorsal root avulsion injury. In the second part, the ability of murine neural progenitors to protect spinal motor neurons from a neurodegenerative process is tested.

In the first original research article, I show that human embryonic stem cell derived neural progenitors are able to restore sensorimotor functions, mediated by the formation of a tissue bridge that allows ingrowth of sensory axons into the spinal cord. In the second research article, I present that murine boundary cap neural crest stem cells, a special type of neural progenitor that governs the entry of sensory axons into the spinal cord during development, are unable to form a permissive tissue bridge. This is possibly caused by the contribution of transplant derived ingrowth non-permissive glial cells. In the third research article, I show that human neural progenitors derived from foetal sources are capable of stimulating sensory ingrowth and that they ameliorate the glial scar. When this approach is combined with the delivery of sensory outgrowth stimulating neurotrophic factors, these cells fail to form a permissive tissue bridge and fail to modify the glial scar. In the final research article, murine boundary cap neural crest stem cells are shown to protect motor neurons, which harbor an amyotrophic lateral sclerosis causing mutation, from oxidative stress. Oxidative stress is a pathological component of amyotrophic lateral sclerosis in human patients.

Taken together, this thesis provides first evidence that sensory regeneration following a spinal root avulsion injury can be achieved by transplantation of human neural progenitors. In addition, it introduces murine boundary cap neural crest stem cells as interesting candidates for the cell therapeutic treatment of amyotrophic lateral sclerosis.

sted, utgiver, år, opplag, sider
Uppsala: Acta Universitatis Upsaliensis, 2017. s. 67
Serie
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, ISSN 1651-6206 ; 1365
Emneord
Regenerative Neurobiology, Stem cells, Sensory regeneration, Spinal cord injury, Amyotrophic Lateral Sclerosis, Neurodegeneration, Oxidative Stress
HSV kategori
Forskningsprogram
Medicinsk vetenskap
Identifikatorer
urn:nbn:se:uu:diva-328590 (URN)978-91-513-0058-0 (ISBN)
Disputas
2017-10-23, B/C8:305, Husargatan 3, Uppsala, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2017-10-02 Laget: 2017-08-31 Sist oppdatert: 2018-01-13

Open Access i DiVA

fulltext(6538 kB)268 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 6538 kBChecksum SHA-512
f30d6ebd38e2cc29a7a7680e2616cc58f2ca4ca27f369bdcfb7dec668aef8e61ad360dd08853061f71d1b07cffb29af7abe34dc4523a40887861ee9a5660bf8d
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstPubMed

Søk i DiVA

Av forfatter/redaktør
Aggarwal, TanyaHoeber, JanIvert, PatrikVasylovska, SvitlanaKozlova, Elena
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 268 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 912 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf