Digitala Vetenskapliga Arkivet

Planned maintenance
A system upgrade is planned for 24/9-2024, at 12:00-14:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance tests of a permanent magnet thrust bearing for a hydropower synchronous generator test-rig
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.ORCID iD: 0000-0003-4265-6545
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
Uppsala University, Disciplinary Domain of Science and Technology, Technology, Department of Engineering Sciences, Electricity.
2017 (English)In: ACES Journal, Vol. 32, no 8, p. 704-711Article in journal (Refereed) Published
Abstract [en]

Permanent magnets are an attractive material to be utilized in thrust bearings as they offer relatively low losses. If utilized properly, they have a long service lifetime and are virtually maintenance free. In this contribution, we communicate the results of the tests performed on a permanent magnet thrust bearing that was custom built and installed in a hydropower synchronous generator test-rig. Tridimensional finite element simulations were performed and compared with measurements of axial force. Spin down times and axial force ripple have also been measured. We found good correspondence between the measurements and the simulations.

Place, publisher, year, edition, pages
2017. Vol. 32, no 8, p. 704-711
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-328078ISI: 000410166500010OAI: oai:DiVA.org:uu-328078DiVA, id: diva2:1133820
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy StorageStandUpAvailable from: 2017-08-16 Created: 2017-08-16 Last updated: 2017-12-11Bibliographically approved
In thesis
1. Analysis and control of magnetic forces in synchronous machines
Open this publication in new window or tab >>Analysis and control of magnetic forces in synchronous machines
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In a synchronous machine, radial, tangential, and axial forces are generated. In this thesis, three different technologies to control them are proposed. The first one, involves the utilization of the radial forces that arise between the rotor and the stator. This is achieved by segmenting the rotor field winding into groups of poles and controlling their corresponding magnetization individually. This technology is particularly useful to achieve magnetic balance and to create controllable radial forces. The second technology, involves the control of the rotor field in order to influence the tangential forces that produce torque. This is achieved by inverting the rotor field winding polarity with respect to the stator field. With this technique, breaking and accelerating torques can be created. It is particularly useful to start a synchronous machine. Finally, the application of axial forces with a magnetic thrust bearing is discussed. The main benefits of this technology are higher efficiency and increased reliability.

The work presented in this thesis was carried out within the Division of Electricity in the Department of Engineering Sciences at Uppsala University. It is based on original research supported by analytical calculations, computational simulations and extensive experimental work.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017. p. 84
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, ISSN 1651-6214 ; 1542
Keywords
eccentricity, electromagnetics, electromagnetic forces, excitation, magnetic fields, magnetic forces, magnetic thrust bearing, rotor drive, split rotor, starting, synchronous generators, synchronous machines, synchronous motors, unbalanced magnetic pull
National Category
Engineering and Technology
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-328086 (URN)978-91-513-0036-8 (ISBN)
Public defence
2017-10-06, Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 13:15 (English)
Opponent
Supervisors
Available from: 2017-09-13 Created: 2017-08-16 Last updated: 2017-10-17
2. Improving the functionality of synchronous machines using power electronics
Open this publication in new window or tab >>Improving the functionality of synchronous machines using power electronics
2017 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

With the advent of modern power electronics there is reason to explore what can be achieved when it is applied to a mature technology like synchronous machines. In this text several concepts will be presented on how it is possible to control forces and how to get better performance out of synchronous machines by using power electronics. Methodologies to create radial forces by controlling the field current in a standard series connected rotor winding as well as when the winding is split in to several segments is presented. By segmenting the rotor a resulting force vector can be created to cancel forces due to unbalanced magnetic pull.

It is also shown that inverting the field current with respect to the stator field enables line start of synchronous machines without using damper bars, frequency converters, or starting motors.

Some first results from the installation and testing of an electromagnetic thrust bearing installed in unit U9 in the hydropower station in Porjus are presented. The benefits of the system is increased reliability and higher efficiency of the thrust bearing system.

An evaluation of a 2-stage brushless excitation system was done, different rotating power electronics topologies were tested in the stationary frame connected to a six-phase permanent magnet brushless exciter. The rotating control and measurement system for the power electronics is presented. Potential benefits of the system is that there is no need for brushes to transfer the field current to the rotor winding, fast response time due to actively controlled electronics, independence of the station bus voltage, and reduced maintenance.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2017
Series
UURIE / Uppsala University, Department of Engineering Sciences, ISSN 0349-8352 ; 352-17L
Keywords
Power electronics, Synchronous machines, Excitation systems, Magnetic thrust bearing, Starting synchronous machines, Split rotor, Rotating electronics, Magnetic fields, Measurement systems, Unbalanced magnetic pull, Harmonics
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Engineering Science with specialization in Science of Electricity
Identifiers
urn:nbn:se:uu:diva-333940 (URN)
Presentation
2017-12-18, Häggsalen (Å10132), Ångströmslaboratoriet, Lägerhyddsvägen 1, Uppsala, 10:15 (English)
Opponent
Supervisors
Available from: 2018-01-08 Created: 2017-11-20 Last updated: 2018-01-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.aces-society.org/journal.php

Search in DiVA

By author/editor
Pérez-Loya, Jesús JoséAbrahamsson, JohanEvestedt, FredrikLundin, Urban
By organisation
Electricity
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 420 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf