Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Joint Epipolar Tracking (JET): Simultaneous optimization of epipolar geometry and feature correspondences
Goethe University, Germany.
Goethe University, Germany.
Goethe University, Germany.
Linköpings universitet, Institutionen för systemteknik, Datorseende. Linköpings universitet, Tekniska fakulteten. Goethe University, Germany.
2017 (Engelska)Ingår i: 2017 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2017), IEEE , 2017, s. 445-453Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Traditionally, pose estimation is considered as a two step problem. First, feature correspondences are determined by direct comparison of image patches, or by associating feature descriptors. In a second step, the relative pose and the coordinates of corresponding points are estimated, most often by minimizing the reprojection error (RPE). RPE optimization is based on a loss function that is merely aware of the feature pixel positions but not of the underlying image intensities. In this paper, we propose a sparse direct method which introduces a loss function that allows to simultaneously optimize the unscaled relative pose, as well as the set of feature correspondences directly considering the image intensity values. Furthermore, we show how to integrate statistical prior information on the motion into the optimization process. This constructive inclusion of a Bayesian bias term is particularly efficient in application cases with a strongly predictable (short term) dynamic, e.g. in a driving scenario. In our experiments, we demonstrate that the JET` algorithm we propose outperforms the classical reprojection error optimization on two synthetic datasets and on the KITTI dataset. The JET algorithm runs in real-time on a single CPU thread.

Ort, förlag, år, upplaga, sidor
IEEE , 2017. s. 445-453
Serie
IEEE Winter Conference on Applications of Computer Vision, ISSN 2472-6737
Nationell ämneskategori
Datorseende och robotik (autonoma system)
Identifikatorer
URN: urn:nbn:se:liu:diva-139430DOI: 10.1109/WACV.2017.56ISI: 000404165800049ISBN: 978-1-5090-4822-9 (tryckt)OAI: oai:DiVA.org:liu-139430DiVA, id: diva2:1129770
Konferens
17th IEEE Winter Conference on Applications of Computer Vision (WACV)
Tillgänglig från: 2017-08-07 Skapad: 2017-08-07 Senast uppdaterad: 2018-01-13

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltext

Sök vidare i DiVA

Av författaren/redaktören
Mester, Rudolf
Av organisationen
DatorseendeTekniska fakulteten
Datorseende och robotik (autonoma system)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 207 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf