Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Effects of Measurement Error on the Genetic Algorithm in Soil Parameter Identification for an Earth- and Rockfill Dam
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.ORCID-id: 0000-0001-6562-1738
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.
Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, Geoteknologi.ORCID-id: 0000-0003-1935-1743
2017 (engelsk)Inngår i: ICSMGE 2017: 19th International Conference on Soil Mechanics and Geotechnical Engineering, 19th ICSMGE Secretariat , 2017, s. 2443-2446Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

It is usually difficult to determine values for soil parameter values in earth- A nd rockfill dams by traditional methods. Field sampling is not easily performed, especially in the impervious parts, since the performance and safety of the dam structure may be affected in an unfavourable way. Therefore other methods, preferably non-destructive, are needed to investigate the mechanical behaviour. Inverse analysis has been utilised to identify soil parameter values for an earth- A nd rockfill dam. An error function and a genetic search algorithm were combined with a finite element software to perform the analysis. The model parameters in the chosen constitutive model were calibrated until the horizontal deformations corresponded to the horizontal inclinometer deformations. Errors or irregularities in field measurements can occur, for instance based on the accuracy of the equipment. In this study, the performance of the genetic algorithm was investigated, when applied to identify soil parameters for a dam. Added perturbations to simulated inclinometer data are randomly generated within a chosen interval of error. The results showed that the genetic algorithm found a minimum for the error function even though the field data was substantially perturbed. Errors up to 10% were shown to have minor impact

sted, utgiver, år, opplag, sider
19th ICSMGE Secretariat , 2017. s. 2443-2446
HSV kategori
Forskningsprogram
Geoteknik
Identifikatorer
URN: urn:nbn:se:ltu:diva-64847Scopus ID: 2-s2.0-85045198380OAI: oai:DiVA.org:ltu-64847DiVA, id: diva2:1121328
Konferanse
19th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2017, Seoul, South Korea, 17-22 September 2017
Tilgjengelig fra: 2017-07-10 Laget: 2017-07-10 Sist oppdatert: 2018-04-23bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Scopus

Søk i DiVA

Av forfatter/redaktør
Toromanovic, JasminaMattsson, HansLaue, Jan
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 292 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf