Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance of pile-up mitigation techniques for jets in pp collisions at root s=8 TeV using the ATLAS detector
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
Uppsala University, Disciplinary Domain of Science and Technology, Physics, Department of Physics and Astronomy, High Energy Physics.
Show others and affiliations
Number of Authors: 28592016 (English)In: European Physical Journal C, ISSN 1434-6044, E-ISSN 1434-6052, Vol. 76, no 11, article id 581Article in journal (Refereed) Published
Abstract [en]

The large rate of multiple simultaneous protonproton interactions, or pile-up, generated by the Large Hadron Collider in Run 1 required the development of many new techniques to mitigate the adverse effects of these conditions. This paper describes the methods employed in the ATLAS experiment to correct for the impact of pile-up on jet energy and jet shapes, and for the presence of spurious additional jets, with a primary focus on the large 20.3 fb(-1) data sample collected at a centre-of-mass energy of root s = 8 TeV. The energy correction techniques that incorporate sophisticated estimates of the average pile-up energy density and tracking information are presented. Jet-to-vertex association techniques are discussed and projections of performance for the future are considered. Lastly, the extension of these techniques to mitigate the effect of pile-up on jet shapes using subtraction and grooming procedures is presented.

Place, publisher, year, edition, pages
2016. Vol. 76, no 11, article id 581
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:uu:diva-322929DOI: 10.1140/epjc/s10052-016-4395-zISI: 000399931300001OAI: oai:DiVA.org:uu-322929DiVA, id: diva2:1103974
Note

ATLAS Collaboration, for complete list of authors see dx.doi.org/10.1140/epjc/s10052-016-4395-z

Funding: We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Available from: 2017-05-31 Created: 2017-05-31 Last updated: 2018-05-18Bibliographically approved

Open Access in DiVA

fulltext(3512 kB)134 downloads
File information
File name FULLTEXT01.pdfFile size 3512 kBChecksum SHA-512
c011e3cc9962d61f24f89c0e169e77d26a746f22f6c3fbd14a5ded1e4ee7ecbd9ccefd0ad3734b5bbc6030eed7471747139ad4aa943fbd129a1ab6f2548e4fe2
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Bergeås Kuutmann, ElinBrenner, RichardEkelöf, TordEllert, MattiasFerrari, ArnaudGardin, P. O. JoakimIsaksson, CharlieMadsen, AlexanderÖhman, HenrikPelikan, DanielRangel Smith, Camila
By organisation
High Energy Physics
In the same journal
European Physical Journal C
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar
Total: 134 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 383 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf