Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Static polarizabilities and C-6 dispersion coefficients using the algebraic-diagrammatic construction scheme for the complex polarization propagator
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.
KTH, School of Biotechnology (BIO), Theoretical Chemistry and Biology.ORCID iD: 0000-0002-1191-4954
2017 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 146, no 9, article id 094301Article in journal (Refereed) Published
Abstract [en]

An implementation of the damped linear response function, or complex polarization propagator, using the algebraic-diagrammatic construction (ADC) scheme has been developed and utilized for the calculation of electric-dipole polarizabilities and C-6 dispersion coefficients. Four noble gases (He, Ne, Ar, and Kr), five n-alkanes (methane, ethane, propane, butane, and pentane), three carbonyls (formaldehyde, acetaldehyde, and acetone), and three unsaturated hydrocarbons (ethene, acetylene, and benzene) have been treated with the hierarchical set of models ADC(2), ADC(2)-x, and ADC(3/2), and comparison has been made to results obtained with damped linear response Hartree-Fock (HF) and coupled cluster singles and doubles (CCSD) theory as well as high-quality experimental estimates via the dipole oscillator strength distribution approach. This study marks the first ADC calculations of C-6 dispersion coefficients and the first ADC(3/2) calculations of static polarizabilities. Results at CCSD and ADC(3/2) levels of theory are shown to be of similar quality, with electron correlation effects increasing the molecular property values for all calculations except CCSD considerations of ethene and acetylene (attributed to an overestimation of bond electron density at HF level of theory). The discrepancies betweenCCSDand ADC(3/2) are partially due toADCoverestimating anisotropies, and discrepancies with respect to experimental values are partially due to the lack of zero-point vibrational effects in the present study.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2017. Vol. 146, no 9, article id 094301
National Category
Theoretical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-205468DOI: 10.1063/1.4977039ISI: 000397312800043Scopus ID: 2-s2.0-85014523826OAI: oai:DiVA.org:kth-205468DiVA, id: diva2:1097890
Note

QC 20170523

Available from: 2017-05-23 Created: 2017-05-23 Last updated: 2017-05-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Fransson, ThomasRehn, Dirk RobertNorman, P.
By organisation
Theoretical Chemistry and Biology
In the same journal
Journal of Chemical Physics
Theoretical Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf