Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Reducibility of Mapping Class Group Representations: The SU(N) case
CTQM, Department of Mathematical Sciences, Aarhus University, Aarhus, Denmark.
Department of Physics, Karlstad University, Karlstad, Sweden.ORCID-id: 0000-0003-0372-5093
2010 (engelsk)Inngår i: Noncommutative structures in mathematics and physics / [ed] Stefaan Caenepeel, Jürgen Fuchs, Simone Gutt, Christophe Schweigert, Alexander Stolin, Freddy Van Oystaeyen, Brussels: Koninklijke vlaamse academie van Belgie voor Wetenschappen en kunsten, 2010, s. 27-45Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

We review and extend the results of [1] that gives a condition for reducibility of quantum representations of mapping class groups constructed from Reshetikhin-Turaev type topological quantum field theories based on modular categories. This criterion is derived using methods developed to describe rational conformal field theories, making use of Frobenius algebras and their representations in modular categories. Given a modular category C, a rational conformal field theory can be constructed from a Frobenius algebra A in C. We show that if C contains a symmetric special Frobenius algebra A such that the torus partition function Z(A) of the corresponding conformal field theory is non-trivial, implying reducibility of the genus 1 representation of the modular group, then the representation of the genus g mapping class group constructed from C is reducible for every g\geq 1. We also extend the number of examples where we can show reducibility significantly by establishing the existence of algebras with the required properties using methods developed by Fuchs, Runkel and Schweigert. As a result we show that the quantum representations are reducible in the SU(N) case, N>2, for all levels k\in \mathbb{N}. The SU(2) case was treated explicitly in [1], showing reducibility for even levels k\geq 4.

sted, utgiver, år, opplag, sider
Brussels: Koninklijke vlaamse academie van Belgie voor Wetenschappen en kunsten, 2010. s. 27-45
HSV kategori
Identifikatorer
URN: urn:nbn:se:oru:diva-57717ISBN: 978-90-6569-061-6 (tryckt)OAI: oai:DiVA.org:oru-57717DiVA, id: diva2:1096434
Konferanse
Noncommutative Structures in Mathematics and Physics, Brussels, Belgium, July 22-26, 2008
Tilgjengelig fra: 2014-11-25 Laget: 2017-05-17 Sist oppdatert: 2018-02-27bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

ArXiv

Søk i DiVA

Av forfatter/redaktør
Fjelstad, Jens

Søk utenfor DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 176 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf