CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt164",{id:"formSmash:upper:j_idt164",widgetVar:"widget_formSmash_upper_j_idt164",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt165_j_idt173",{id:"formSmash:upper:j_idt165:j_idt173",widgetVar:"widget_formSmash_upper_j_idt165_j_idt173",target:"formSmash:upper:j_idt165:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Random l-colourable structures with a pregeometryPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2017 (English)In: Mathematical logic quarterly, ISSN 0942-5616, E-ISSN 1521-3870, Vol. 63, no 1-2, p. 32-58Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Wiley-VCH Verlagsgesellschaft, 2017. Vol. 63, no 1-2, p. 32-58
##### National Category

Algebra and Logic
##### Research subject

Mathematical Logic
##### Identifiers

URN: urn:nbn:se:uu:diva-321515DOI: 10.1002/malq.201500006ISI: 000400361900003OAI: oai:DiVA.org:uu-321515DiVA, id: diva2:1093452
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt587",{id:"formSmash:j_idt587",widgetVar:"widget_formSmash_j_idt587",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt594",{id:"formSmash:j_idt594",widgetVar:"widget_formSmash_j_idt594",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt600",{id:"formSmash:j_idt600",widgetVar:"widget_formSmash_j_idt600",multiple:true}); Available from: 2017-05-06 Created: 2017-05-06 Last updated: 2017-11-28Bibliographically approved
##### In thesis

We study finite -colourable structures with an underlying pregeometry. The probability measure that is usedcorresponds to a process of generating such structures by which colours are first randomly assigned to all1-dimensional subspaces and then relationships are assigned in such a way that the colouring conditions aresatisfied but apart from this in a random way. We can then ask what the probability is that the resulting structure,where we now forget the specific colouring of the generating process, has a given property. With this measurewe get the following results: (1) A zero-one law. (2) The set of sentences with asymptotic probability 1 has anexplicit axiomatisation which is presented. (3) There is a formula ξ (x, y) (not directly speaking about colours)such that, with asymptotic probability 1, the relation “there is an -colouring which assigns the same colourto x and y” is defined by ξ (x, y). (4) With asymptotic probability 1, an -colourable structure has a unique-colouring (up to permutation of the colours).

1. Limit Laws, Homogenizable Structures and Their Connections$(function(){PrimeFaces.cw("OverlayPanel","overlay1160702",{id:"formSmash:j_idt904:0:j_idt908",widgetVar:"overlay1160702",target:"formSmash:j_idt904:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1656",{id:"formSmash:j_idt1656",widgetVar:"widget_formSmash_j_idt1656",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1753",{id:"formSmash:lower:j_idt1753",widgetVar:"widget_formSmash_lower_j_idt1753",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1754_j_idt1756",{id:"formSmash:lower:j_idt1754:j_idt1756",widgetVar:"widget_formSmash_lower_j_idt1754_j_idt1756",target:"formSmash:lower:j_idt1754:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});