Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Don’t Let Notes Be Misunderstood: A Negation Detection Method for Assessing Risk of Suicide in Mental Health Records
KTH, Skolan för datavetenskap och kommunikation (CSC), Teoretisk datalogi, TCS.ORCID-id: 0000-0002-4178-2980
Visa övriga samt affilieringar
2016 (Engelska)Ingår i: Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology, Association for Computational Linguistics , 2016, s. 95-105Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Mental Health Records (MHRs) contain freetext documentation about patients’ suicide and suicidality. In this paper, we address the problem of determining whether grammatic variants (inflections) of the word “suicide” are af- firmed or negated. To achieve this, we populate and annotate a dataset with over 6,000 sentences originating from a large repository of MHRs. The resulting dataset has high InterAnnotator Agreement (κ 0.93). Furthermore, we develop and propose a negation detection method that leverages syntactic features of text1 . Using parse trees, we build a set of basic rules that rely on minimum domain knowledge and render the problem as binary classification (affirmed vs. negated). Since the overall goal is to identify patients who are expected to be at high risk of suicide, we focus on the evaluation of positive (affirmed) cases as determined by our classifier. Our negation detection approach yields a recall (sensitivity) value of 94.6% for the positive cases and an overall accuracy value of 91.9%. We believe that our approach can be integrated with other clinical Natural Language Processing tools in order to further advance information extraction capabilities.

Ort, förlag, år, upplaga, sidor
Association for Computational Linguistics , 2016. s. 95-105
Nationell ämneskategori
Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:kth:diva-204782OAI: oai:DiVA.org:kth-204782DiVA, id: diva2:1086114
Konferens
Proceedings of the Third Workshop on Computational Lingusitics and Clinical Psychology
Anmärkning

QC 20170418

Tillgänglig från: 2017-03-31 Skapad: 2017-03-31 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

http://www.aclweb.org/anthology/W16-0310

Sök vidare i DiVA

Av författaren/redaktören
Velupillai, Sumithra
Av organisationen
Teoretisk datalogi, TCS
Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 5 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf