Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Characterisation of mental health conditions in social media using Informed Deep Learning
KTH, Skolan för datavetenskap och kommunikation (CSC), Teoretisk datalogi, TCS.ORCID-id: 0000-0002-4178-2980
Visa övriga samt affilieringar
2017 (Engelska)Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The number of people affected by mental illness is on the increase and with it the burden on health and social care use, as well as the loss of both productivity and quality-adjusted life-years. Natural language processing of electronic health records is increasingly used to study mental health conditions and risk behaviours on a large scale. However, narrative notes written by clinicians do not capture first-hand the patients' own experiences, and only record cross-sectional, professional impressions at the point of care. Social media platforms have become a source of 'in the moment' daily exchange, with topics including well- being and mental health. In this study, we analysed posts from the social media platform Reddit and developed classifiers to recognise and classify posts related to mental illness according to 11 disorder themes. Using a neural network and deep learning approach, we could automatically recognise mental illness-related posts in our balenced dataset with an accuracy of 91.08% and select the correct theme with a weighted average accuracy of 71.37%. We believe that these results are a first step in developing methods to characterise large amounts of user-generated content that could support content curation and targeted interventions.

Ort, förlag, år, upplaga, sidor
The Author(s) SN - , 2017. Vol. 7
Nationell ämneskategori
Språkteknologi (språkvetenskaplig databehandling)
Identifikatorer
URN: urn:nbn:se:kth:diva-204776DOI: 10.1038/srep45141ISI: 000396994200001Scopus ID: 2-s2.0-85016019626OAI: oai:DiVA.org:kth-204776DiVA, id: diva2:1086111
Anmärkning

QC 20170418

Tillgänglig från: 2017-03-31 Skapad: 2017-03-31 Senast uppdaterad: 2018-01-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopushttp://dx.doi.org/10.1038/srep45141

Sök vidare i DiVA

Av författaren/redaktören
Velupillai, Sumithra
Av organisationen
Teoretisk datalogi, TCS
I samma tidskrift
Scientific Reports
Språkteknologi (språkvetenskaplig databehandling)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 35 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf